Detecting the angular momentum compensation by NMR

<u>Masaki Imai¹</u>, Hiroyuki Chudo¹, Mamoru Matsuo^{1, 2,3}, Sadamichi Maekawa^{1,2,3}, and Eiji Saitoh^{1,4}

 ¹Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
²Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
³Riken Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
⁴Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku,

Ferrimagnets contains multiple types of magnetic ions; their magnetic moments align in opposite direction. In some ferrimagnets, the net angular momentum becomes zero at the angular momentum compensation temperature T_A . Our group demonstrated the observation of T_A by using the Barnett effect [1], in which mechanical rotation magnetizes an object due to spin-rotation coupling [2,3]. We observed the Barnett effect of the rare earth iron garnet Ho_{3-x}Dy_xFe₅O₁₂ with air-driven rotor system, and determined T_A to be 240 K in Ho₃Fe₅O₁₂ (HoIG). With the focus on magnetic dynamics at T_A , a microscopic method was required to investigate the spin dynamics at T_A .

Here, we propose an NMR method to explore the spin dynamics at T_{A} . In ferro(ferri)magnets, the NMR signal is enhanced via hyperfine interactions. Particularly, the NMR signal from nuclei in domain walls is strongly enhanced due to the magnetic domain wall motion (Fig. 1).

We show that ⁵⁷Fe-NMR measurements can be used to explore domain wall dynamics near T_A in HoIG. We found that the NMR signal shows a maximum at T_A in the multi-domain

Fig. 1 Schematic illustration of enhancement of the NMR signal in a domain wall.

state. This enhancement of the signal enables us to determine T_A by the NMR measurement [4].

- [1] S. J. Barnett, Phys. Rev. 6, 239 (1915)., S. J. Barnett, Rev. Mod. Phys. 7, 129 (1935).
- [2] M. Imai, Y. Ogata, H. Chudo et al., Applied Physics Letters 113, 052402 (2018).
- [3] M. Imai, H. Chudo, M. Ono, et al., Appl. Phys. Lett. 114, 162402 (2019).
- [4] M. Imai, H. Chudo, et al., Physical Review B 102, 014407 (2020).