Field-Induced Switching of Ferro-Quadrupole Order Parameter in PrTi₂Al₂₀

Takanori Taniguchi^{1, 2}, Kazumasa Hattori³, Makoto Yoshida¹, Hikaru Takeda¹, Shota Nakamura¹, Toshirou Sakakibara¹, Masaki Tsujimoto¹, Akito Sakai¹, Yousuke Matsumoto¹, Satoru Nakatsuji¹, and Masashi Takigawa¹ ¹Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan ²Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ³Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0937, Japan

The cubic compound $PrTi_2Al_{20}$ has the non-magnetic ground states of crystal field (Γ_3). The Γ_3 doublet have two pure electric quadrupoles of the Γ_3 -type, O_{20} ($3z^2-r^2$) and O_{22} (x^2-y^2), and magnetic octupole of Γ_2 -type, $T_{xyz}=xyz$ [1, 2]. The various measurements, such as specific heat, ultrasonic, neutron and NMR, reported that the ferro-quadrupole transition occurs near 2 K in this compound [3-6].

In this presentation, we will discuss the H - T phase diagrams from ²⁷Al-NMR and magnetization measurements in a single crystal of PrTi₂Al₂₀. When a magnetic field is applied along the [111] direction above 0.5 T, certain lines of the NMR spectrum split upon entering into the ordered phase, indicating breaking of the C_3 symmetry due to field induced magnetic dipole moment perpendicular to the field. This provides the first evidence for symmetry-breaking ferro-quadrupole order of O_{20} type[6].

Recently, we observed the clear anomaly for the field-induced transition (the first transition) associated with the quadrupole moments near 2 T and 1.5 T for $H \parallel [001]$ and [110] from NMR spectra and magnetization [7]. However, for $H \parallel [111]$, the absence of an anomaly occurs between 0.5 T and 11 T, suggesting the phase diagram has single ordered phase[6, 7]. The origin of anisotropic field induced transition is the competition between Zeeman interaction and ferro-quadrupole interaction coupled with the magnetic field. We will then present the detail of these experimental results and our calculation of Free energy for this system with mean field theory.

[1] T. Onimaru and H. Kusunose, J. Phys. Soc. Jpn. 85, 082002 (2016). [2] R. Shiina, et al., J. Phys. Soc. Jpn. 66, 1741 (1997). [3] A. Sakai, et al., J. Phys. Soc. Jpn. 80, 063701 (2011). [4] M. Koseki, et al., J. Phys. Soc. Jpn. 80, SA049 (2011). [5] T. J. Sato, et al., Phys. Rev. B. 86, 184419 (2012). [6] T. Taniguchi, et al., J. Phys. Soc. Jpn. 85, 113703 (2016). [7] T. Taniguchi, et al., J. Phys. Soc. Jpn. 88, 084707 (2019).