Spinons and Magnon Pairs in the Spin-Seebeck Effect

Daichi Hirobe¹ and Eiji Saitoh²⁻⁶

¹CIMoS, Institute for Molecular Science, Okazaki 444-8585, Japan

²WPI AIMR, Tohoku University, Sendai 980-8577, Japan

³IMR, Tohoku University, Sendai 980-8577, Japan

⁴Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan

⁵CSRN, Tohoku University, Sendai 980-8577, Japan

⁶ASRC, Japan Atomic Energy Agency, Tokai 319-1195, Japan

Investigating exotic magnetic materials with spintronic techniques has been proving effective at advancing magnetism and spintronics [1]. Particularly, the spin-Seebeck effect (SSE), the thermal generation of spin current, is a powerful tool for detecting signatures of elusive quasiparticles in quantum spin systems. This is thanks to the fact that SSE is applicable to Mott insulators while it can result from quasiparticles mediated by antiferromagnetic interactions. Hence, the two features make SSE applicable to quantum spin systems with antiferromagnetic interactions.

In this contribution, I will present experimental results for spin-Seebeck effects of one-dimensional spin liquids, that is, a Tomonaga-Luttinger liquid (TLL) in Sr₂CuO₃ [2] and a spin-nematic TLL in LiCuVO₄ [3]. Sr₂CuO₃ is an established model material for spinons while LiCuVO₄ for magnon pairs, partly demonstrated by neutron scattering experiments [4-6]. Our experiments, combined with theoretical calculations, demonstrated that SSE can probe spinons in a TLL and magnon pairs in a spin-nematic TLL. Our study shows that SSE serves as an effective probe for spin-transport properties of quantum spin systems, rendering itself complementary to quantum beam experiments.

- [1] W. Han, Y. Otani, and S. Maekawa, npj Quantum Mater. 3, 27 (2018).
- [2] <u>D. Hirobe</u>, et al., Nat. Phys. **13**, 30-34 (2017).
- [3] D. Hirobe, et al., Phys. Rev. Lett. **123**, 117202 (2019).
- [4] A. C. Walters, et al., Nat. Phys. 5, 867 (2009).
- [5] T. Masuda, et al., J. Phys. Soc. Jpn. 80, 113705 (2011).
- [6] M. Mourigal, et al., Phys. Rev. Lett. 109, 027203 (2012).