Spinmechatronics using Y₃Fe₅O₁₂ cantilever

K. Harii^{1*}, Y. J. Seo², Y. Tsutsumi⁴, K. Oyanagi², R. Takahashi³, Y. Shiomi^{4,5}, M. Matsuo⁶, H. Chudo¹, S. Maekawa^{5,6}, and E. Saitoh^{1,7,8}
¹Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan.
²Institute for Materials Research, Tohoku Univ., Sendai, Japan.
³Ochanomizu Univ., Bunkyo-ku, Japan.
⁴Department of Basic Science, Univ. of Tokyo, Shibuya-ku, Japan.
⁵RIKEN Center for Emergent Matter Science, Wako, Japan.
⁶Kavli Institute for Science and Technology, Beijing, China.
⁷Department of Applied Physics, Univ. of Tokyo, Bunkyo-ku, Japan.

In the field of spintronics, the angular-momentum-conversion between spin and mechanical rotation motion is attracting interests [1]. We report the recent progress of our studies about the spin-mechanical conversion in micro-cantilever devices consisting of ferrimagnetic yttrium iron garnet $Y_3Fe_5O_{12}$ (YIG), which were fabricated by a focused ion-beam etching method.

Firstly, we performed characterization of our YIG cantilever and found that resonance frequency of it can be controlled by a dc-magnetic field [2]. This behavior is explained by changing restoring force of the cantilever induced by a stray field from the adjacent YIG area.

Next, we pursue to observe the spin-mechanical conversion of pure spin currents. We employed the spin Seebeck effect (SSE) to generate pure spin currents. Applying a current through a heater formed at the root of an YIG cantilever, we injected a spin-Seebeck spin current into the cantilever. To eliminate other heating effects, the cantilever motion was measured by heterodyne detection technique, and we detected cantilever-oscillation signals characterized by mechanical torque due to spin relaxation. The signal disappeared by a spin-current blocking layer made at the root of the cantilever resulting that the signal stems from spin current injection. The spin-mechanical conversion is also confirmed by a theoretical analysis and field-angle dependence [3].

[1] S. T. B. Goennenwein, S. Maekawa, and G. E. W. Bauer, Sol. Stat. Commun. 198, 1 (2014)

[2] Y. Seo et al., Appl. Phys. Lett. 110, 132409 (2017).

[3] K. Harii et al., Nat. Commun. 10, 2616 (2019).