Seminar Schedule

Prof．Karlo Penc

（Research Institute for Solid State Physics and Optics， Hungary）

Date：Mar．25，（Tue．）14：00～
Room：Seminar room，2nd floor，prefab bldg

The physics of $\operatorname{SU}(4)$ Heisenberg models

In the first part of the talk we give a short overview of the $\mathrm{SU}(4)$ symmetrical Heisenberg models：why are they interesting，what happens in the one－dimensional chain and ladder systems，and two－dimensional square lattice．We emphasize the role of the $\mathrm{SU}(4)$ singlet plaquettes，which constitute a kind of crystal for the ladder and square lattice．
In the second part we give a more detailed account of the ground state properties and excitation spectra of the $\mathrm{SU}(4)$ symmetric Heisenberg model on the triangular lattice． The model is motivated by the low－temperature properties of LiNiO_{2} ，a Mott insulator with orbital degeneracy described by the symmetric Kugel－Khomskii model on a trian－ gular lattice．To lift the degeneracy of the corresponding classical model（the antifer－ romagnetic 4 －state Potts model）we have included antiferromagnetic coupling constants between nearest $\left(J_{1}\right)$ and next－nearest $\left(J_{2}\right)$ neighbors．The effect of quantum fluctuations has been studied by three different methods：
（i）The $\mathrm{SU}(4)$ spin wave theory shows that a four－sublattice LRO is stable as long as $J_{2} / J_{1}>0.1$ ，below which it is destroyed by quantum fluctuations．
（ii）Variational calculations in the subspace of resonating $\mathrm{SU}(4)$ plaquette singlets in－ cluding up to two Lánczos steps are shown to provide an accurate description of the low－energy sector of the $J_{2}=0$ case．
（iii）Using exact diagolization on 12 －site clusters，the tower of low－energy states implied by LRO is identified for $J_{2} / J_{1}=0.2$ ，and is missing for $J_{2} / J_{1}=0$ ．

Putting together（i）－（iii），we have strong evidence for a quantum phase transition at a finite value of J_{2} / J_{1} between a spin－orbital liquid and a four－sublattice ordered state．

Finally，we speculate on possible scenarios for the model on the cubic lattice．

