The 31st Reimei Workshop on Hadron Physics in Extreme Conditions at J-PARC Jan. 18 – 20, 2016, Advanced Science Research Center, JAEA Tokai Campus

 ICE
 Laura Tolós

 ICE, IEEC/CSIC, Barcelona

 IEEC⁹
 CSIC

 FIAS, University of Frankfurt

C. García-Recio, C. Hidalgo-Duque, J. Nieves, O. Romanets, L.L. Salcedo, J.M. Torres-Rincón and J. Yamagata-Sekihara

Charm under Extreme Conditions

J/Ψ suppression

Gonin et al (NA50) '96, Matsui and Satz '86

but also comover scattering

$\mathsf{J}/\Psi+\pi\to\mathsf{D}+\overline{\mathsf{D}}$

Capella, Ferreiro, Vogt, Wang, Bratkovskaya, Cassing, Andronic..

D-mesic nuclei

Tsushima et al '99, Garcia-Recio et al '10 Garcia-Recio et al '12 Yasui et al '12, Yamagata-Sekihara '16..

Unitarized theory in matter

selfconsistent coupled-channel procedure (bare interaction saturated by t-channel vector-meson exchange)

Meson-baryon interaction with heavy quarks: Incorporate Heavy-Quark Spin Symmetry

HQSS*: spin interactions vanish for infinitely massive quarks

*Isgur, Wise, Manohar, Neubert

To construct a model for four flavors for pseudoscalar and vector mesons as well as 1/2⁺ and 3/2⁺ baryons that incorporates HQSS in the charm sector: extended WT interaction that fulfills SU(6)xHQSS and it is consistent with chiral symmetry in the light sector

$$V = \frac{K(s)}{4f^2} H'_{\rm WT}, \qquad H'_{\rm WT} = H_{\rm ex} + H'_{\rm ac}.$$

K(s): depends on meson-baryon energy f: decay constant

H_{ex}: exchange of quarks H'_{ac}: annhilation and creation of quarkantiquark pairs, corrected with HQSS constraints (only light quarks)

Spectroscopy of excited charmed baryons

Charmed hadrons in matter

Unitarized theory in matter: selfconsistent coupled-channel procedure

Unitarized theory in matter: selfconsistent coupled-channel procedure

Initially predicted in ²⁰⁸Pb within QMC model Tsushima et al. '99

Within the self-consistent coupledchannel approach that incorporates HQSS

$$\left[-\frac{\nabla^2}{2m_{\rm red}} + V_{\rm coul}(r) + V_{\rm opt}(r)\right]\Psi = (-B - i\Gamma/2)\Psi$$

$$V_D(r, E) = \frac{\Pi_D(q^0 = m_D + E, \vec{q} = 0, \rho(r))}{2m_D}$$

E = q⁰ - m_D

D mesic nuclei

- Weakly bound D⁰-nucleus states with important widths in contrast to QMC model, while D⁺ does not bind

- D^{-} and \overline{D}^{0} bind in nuclei

Formation spectra of charmed meson-nucleus using an antiproton beam

@ J-PARC, PANDA (FAIR)

Yamagata-Sekira, Garcia-Recio, Nieves, Salcedo and LT '16

$$\bar{p} + {}^{12}\mathrm{C} \rightarrow \left[{}^{11}\mathrm{B} - D^{-}\right] + D^{+}$$
$$\bar{p} + {}^{12}\mathrm{C} \rightarrow \left[{}^{11}\mathrm{B} - D^{0}\right] + \bar{D}^{0}$$

Large momentum transfer (about 1 GeV/c) makes any structure due to bound states not noticeable. Need of reactions with lower momentum transfer, such as

$$\bar{p} + p \to D^{*-} + D^+,$$

 $D^{*-} + A_Z \to \pi^0 + [A_Z - D^-]_b$

Figure 2: Formation spectrum for the $\bar{p} + {}^{12}C \rightarrow [{}^{11}B - D^{-}] + D^{+}$ reaction at $P_{\bar{p}} = 8 \text{GeV/c}$ and $\theta_{D^{+}}^{\text{LAB}} = 0^{\circ}$, as a function of the outgoing D^{+} meson total energy. The partial contributions of some shell configurations of the final nucleus are also shown in the figure. The vertical dashed line indicates the D^{-} meson production threshold.

Figure 3: Same as in Fig. 2, but for the $\bar{p} + {}^{12}C \rightarrow [{}^{11}B - D^0] + \bar{D}^0$ reaction. The vertical dashed line indicates now the D^0 meson production threshold.

D meson propagation in dense hot matter

D-mesons: One of the cleanest probes of the early stages of the collision

Fokker-Planck equation

Previous works Laine '11; He, Fries, Rapp '11; Ghosh, Das, Sarkar, -eAlam '11

We need scattering amplitudes |T|² Abreu, Cabrera, Llanes-Estrada, Torres-Rincon '11; LT and Torres-Rincon '13

Some results for FAIR energies

LT and Torres-Rincon '13

Beauty under Extreme Conditions

Spectroscopy of excited beauty baryons

Garcia-Recio, Nieves, Romanets, Salcedo and LT '13

 $\Lambda_b(5912)$ and $\Lambda^*_b(5920)$ found by LHCb* collaboration are described as mesonbaryon molecular states belonging to a HQSS doublet. New HQSS partners are predicted: $\Xi_b(6035)$ and $\Xi_b(6043)$

* Aaij et al (LHCb) '12

B meson propagation in dense hot matter

Fokker-Planck equation

Results from FAIR to RHIC energies

Torres-Rincon, LT and Romanets '14

Bottom can hardly relax during expansion fireball ($\tau_{fireball}$ ~10 fm) Results insensitive to trajectory for high s/n_B: prediction for behaviour of hadronic medium at RHIC energies

Summary

- it is an exciting moment
- moving from the light to the charm/beauty sector
- ➤ a lot of theoretical effort is needed
- but in close connection to experiments in laboratories

