#### **J-PARC Heavy-Ion Acceleration**

#### Pranab K. Saha, H. Harada J-PARC Center

#### J-PARC KEK & JAEA)

#### Neutrino experiment (NU)

Materials & Life Science Facility (MLF)

Televille and

FFF

400 MeV H<sup>-</sup> Linac

50 GeV Main Ring Synchrotron (MR) [30 GeV at present]

mental

**Synchrotron (RCS)** 

**GeV Rapid Cycling** 

Hadron Experimental Hall (HD)



### Introduction and Outline

J-PARC is a multi-purpose research facility consists of 3 accelerators and several experimental facilities that make use of high intensity proton beams.
RCS already achieved acceleration of designed 1 MW-eqv. beam power.
MR also approaching towards the designed beam power.

In response to the interesting HI physics program, we are considering to adapt new accelerator scheme for HI in J-PARC.

• Studies of HI acceleration in the RCS is the main topic in this talk.

#### **Outline**:

- 1. Overview of J-PARC HI physics program
- 2. HI acceleration strategy and accelerator scheme
- 3. Overview of 3-GeV RCS and latest performances
- 4. Simulation results of  $U^{86+}$  acceleration in the RCS
- 5. Summary and Outlook



## HI physics goal at J-PARC



• To study QCD phase structures (critical point and phase boundary) in high baryon density regime of  $8-10\rho_0$  (U+U system).

 Study the properties of high baryon density matter.

→ Fixed target collision by using slowly extracted HI beam of 1E11/cycle (6s) from the MR.

The HD programs should also have advantages by using HI beam.

- Hypernuclear production rate
- S=-3 sector (only possible by HI collisions)

Beam energy: 1-20 GeV/u (U) beam from the MR

Beam intensity: 1E11/cycle (~6s)

To adapt such a high intensity HI scheme in the already running proton machines and moreover without intercepting any the of existing programs with proton beam is surely a big challenge!

## **HIAcceleration strategy in J-PARC**

We plan to use existing and high performance RCS and the MR for HI acceleration in addition to proton.

The RCS can be a suitable HI injector for MR for the final acceleration up to ~20 GeV/u (@50 GeV for p).

**RCS:** Already achieved designed 1 MW-eq. beam power. **MR :** Achieved up to ~5E13 protons/cycle for HD operation.

O Well understood and optimized accelerator performances.
--- Enable realistic discussion on beam dynamics issues and measures for high intensity HI beam.

**O** Use existing building and devices.

-- Reduction of space and budget to accelerate up to  $\sim$ GeV/u (U) for MR injection.

- **©** RCS has Large acceptance
- -- transverse ( $\varepsilon_{tr}$ ) > 486 $\pi$  mm mrad, longitudinal ( $\Delta p/p$ ) > ±1%

# (Yet unofficial!)





# Key issues to realize HI acceleration

We should meet the goal without intercepting any of the existing/planned programs with proton beam.

## Four following serious issues, particularly with RCS must be cleared.

• Simultaneous operation with proton for MLF and HI for MR must be done.

• Most of the machine parameters fixed for p must be used for HI (At present, no choice for changing most of the parameters between cycles).

Vacuum pressure level: ~10<sup>-8</sup> Torr (no problem for p).
 Not satisfied for HI w/ lower charge states (U<sup>86+</sup> is thus considered).

#### New HI injection system



#### RCS beam delivery pattern



#### MR operates for either NU or HD

When MR operates for HD (5.52s), No. of RCS cycles:  $25 \times 5.52 = 138$  $\rightarrow$  134 RCS cycles to MLF, 4 to MR

Only when MR runs HI, RCS injects HI in the MR cycle.
 → No conflict with MLF/NU



#### Location for RCS HI injection Scheme

RCS extraction are

to MR



#### HI injection system in the R(

Place: At the end of extraction
→ Only available space.

**Candidate place for HI injection system** 

Scheme: One turn injection from the HI booster.

 $\rightarrow$  By using 1 or 2 kickers. Simple injection system.

P.K. Saha

HIWS-2016



## Overview of the RCS and latest performance with proton beam







## RCS 1 MW beam study results

Courtesy: H. Hotchi



 $\rightarrow$  Demonstrates RCS potential to achieve a rather high intensity HI beam too.



## **RCS** proton beam power capability ---- Space charge limitation

Laslett tune shift at injection energy:

$$\Delta v = -\frac{r_p n_t}{2\pi \beta^2 \gamma^3 \varepsilon B_f}$$

 $r_p$ : classical radius of proton  $n_t$ : no. of protons in the ring  $\beta$ ,  $\gamma$ : relativistic parameters  $\varepsilon$ : transverse painting emittance (100 $\pi$  mm mrad)  $B_f$ : Bunching factor (0.4)

| E <sub>inj</sub><br>(MeV) | <b>ppp</b><br>(x10 <sup>13</sup> ) | Beam power<br>at E <sub>ext</sub> (MW) | Δν    | Comment    |  |
|---------------------------|------------------------------------|----------------------------------------|-------|------------|--|
| 181                       | 4.5                                | 0.54                                   | -0.53 | Achieved   |  |
| 400                       | 8.33                               | 1                                      | -0.33 | Achieved   |  |
| 400                       | 11.0                               | 1.3                                    | -0.43 | Reasonable |  |
| 400                       | 13.3                               | (1.6)                                  | -0.53 | Reasonable |  |
|                           |                                    |                                        |       |            |  |



#### Tune footprint (Simulation)



Trans. painting  $(\varepsilon_{tr}) = 100\pi$  mm mrad Longitudinal painting: Full (B<sub>f</sub>=0.4) V2/V1 =0.8%,  $\Delta p$  offset =-0.2%  $\phi 2$ = -100deg.

Black: 181 MeV injection 4.5E13/pulse (0.54 MW)

Red: 400 MeV injection 12.5E13 /pulse (1.5 MW)



## Simulation for U<sup>86+</sup>acceleration in the RCS

#### Code: ORBIT-3D

Steps:

(1) Single particle w/o SC(2) Multi-particle w/ SC

 BM, QM, Sextuples are kept unchanged as optimized for 1MW proton (for MLF).
 Those can't be changed pulse-to-pulse.

• rf patterns are differently used.
 → Upgrades might be necessary.
 (may not be a big issue!)

Injection energy: 61.8 MeV/u
Extraction energy: 735 MeV/u
→ (1) Successfully confirmed by
the single particle simulation.



## (2) Multi-particle simulations w/ SC

#### Space charge limit:

Laslett tune shift:

 $\Delta v \approx$ 

For 1 MW proton:  $8.33 \times 10^{13}/2b$  $\rightarrow$  4.2 × 10<sup>13</sup>/b

 $: 4.2 \times 10^{13}$  / bunch + p x U<sup>86+</sup>: 1.1 × 10<sup>11</sup> / bunch

• Bare tune (6.45, 6.42)



Consistent with numerical estimation!

**Particle** 

Ρ

U<sup>86+</sup>



# (2) Transverse and longitudinal beam distributions

Inj. beam parameters:

| lnj. | No of | Intensity              | Beam     | ∆s   | ∆p/p | ε <sub>tr</sub> |
|------|-------|------------------------|----------|------|------|-----------------|
| turn | bunch | ( × 10 <sup>11</sup> ) | shape    | (ns) | (%)  | (π mm mrad)     |
| 1    | 1     | 1.1                    | Gaussian | 1180 | ±0.9 | 100             |



>99.9% transverse emittances of the extracted beam are within 3-50BT collimator aperture.

- ✓ Collimated beam power << Collimator limit</p>
- ✓ Satisfy very strict beam quality for MR injection.



#### (2) Beam survival



U<sup>86+</sup>:  $1.1 \times 10^{11} \rightarrow$  stripping at 3-50BT  $\rightarrow U^{92+}$ : ~1 × 10<sup>11</sup>/RCS cycle 4 RCS cycles injection in the MR: 4 ×10<sup>11</sup>/MR cycle !





In order to realize HI physics program in J-PARC, a new HI accelerator scheme by utilizing most of the existing facilities are proposed.

RCS plays the most important role to realize HI program in J-PARC. Possibilities of HI acceleration in the RCS are reported.

Studies are done within the designed and fixed frame for proton in the RCS.

More than 10<sup>11</sup> U<sup>86+</sup> ions can be achieved without any significant beam losses.
 No serious beam dynamics issues even up to such an intensity.

 $\rightarrow$  Gives 4 × 10<sup>11</sup> U<sup>92+</sup> ions/cycle (5.52s) in the MR and quite more than experimental requirement at present.

Design studies of new HI Booster is in good progress.

→ Harada-san (Tomorrow)

The RCS including proposed new HI accelerator scheme has no interference/conflict with existing programs that make use of proton beams.



Saha

#### May be in near future

## Thank you for your attention!

Televis .



## Backup slides

#### **HI Accelerator Scheme**



|              | LINAC | Booster | Stripper 2 | RCS   | Stripper 3                                       | MR             |
|--------------|-------|---------|------------|-------|--------------------------------------------------|----------------|
|              | out   | out     | Carbon     | out   | Cu <z<sub>T<ta< td=""><td>out</td></ta<></z<sub> | out            |
| E<br>(MeV/u) | 20    | 67.0    | 61.8       | 735.4 | 727.0                                            | 11.15<br>GeV/u |
| Q            | 35    | 66+-2   | 86         | 86    | 92                                               | 92             |

#### **Present simulation background**

#### Tool: ORBIT 3-D space charge code:

ightarrow Originally developed at the SNS in Oak Ridge.

 $\rightarrow$  Successfully adopted in the RCS, especially for beam instability simulation.

(Ext. kicker impedance is a significant beam instability source in the RCS.)

• Space charge effect is strongly connected to the beam instability.

-- First an accurate space charge simulation was demonstrated.



Beam instability at 1 MW: Simulation vs. Measurement  The next step was to determine optimum parameters to avoid beam instability at 1 MW.

Even DC chromatic correction gives beam instability at 1 MW! → Confirmed by measurements!!

ORBIT can be used HI beam simulation in the RCS