J-PARC Heavy-Ion Acceleration

Pranab K. Saha, H. Harada

J-PARC Center
Neutrino experiment (NU)

Materials & Life Science Facility (MLF)

3 GeV Rapid Cycling Synchrotron (RCS)

400 MeV H- Linac

Transmutation Experimental Facility (TEF)

50 GeV Main Ring Synchrotron (MR) [30 GeV at present]

Hadron Experimental Hall (HD)
J-PARC is a multi-purpose research facility consists of 3 accelerators and several experimental facilities that make use of high intensity proton beams. RCS already achieved acceleration of designed 1 MW-eqv. beam power. MR also approaching towards the designed beam power.

In response to the interesting HI physics program, we are considering to adapt new accelerator scheme for HI in J-PARC.

Studies of HI acceleration in the RCS is the main topic in this talk.

Outline:

1. Overview of J-PARC HI physics program
2. HI acceleration strategy and accelerator scheme
3. Overview of 3-GeV RCS and latest performances
4. Simulation results of U^{86+} acceleration in the RCS
5. Summary and Outlook
HI physics goal at J-PARC

- To study QCD phase structures (critical point and phase boundary) in high baryon density regime of $8-10\rho_0$ (U+U system).
- Study the properties of high baryon density matter.
- Fixed target collision by using slowly extracted HI beam of $1E11$/cycle (6s) from the MR.
- The HD programs should also have advantages by using HI beam.
 - Hypernuclear production rate
 - $S=-3$ sector (only possible by HI collisions)

- Beam energy: 1-20 GeV/u (U) beam from the MR
- Beam intensity: $1E11$/cycle (~6s)

To adapt such a high intensity HI scheme in the already running proton machines and moreover without intercepting any the of existing programs with proton beam is surely a big challenge!
HI Acceleration strategy in J-PARC

- We plan to use existing and high performance RCS and the MR for HI acceleration in addition to proton.
- The RCS can be a suitable HI injector for MR for the final acceleration up to ~20 GeV/u (@50 GeV for p).

RCS: Already achieved designed 1 MW-eq. beam power.
MR: Achieved up to ~5E13 protons/cycle for HD operation.

- Well understood and optimized accelerator performances.
 --- Enable realistic discussion on beam dynamics issues and measures for high intensity HI beam.
- Use existing building and devices.
 -- Reduction of space and budget to accelerate up to ~GeV/u (U) for MR injection.
- RCS has Large acceptance
 -- transverse \((\varepsilon_{tr}) > 486\pi \text{ mm mrad}\), longitudinal \((\Delta p/p) > \pm 1\%\)
HI Accelerator scheme in J-PARC
(Yet unofficial!)

- **HI Linac**: 0.4 GeV
- **H^- Linac**: 0.4 GeV
- **U^{35+}** → **U^{66+}**: 20 AMeV
- **U^{35+}** → **U^{66+}**: 61.8 AMeV
- **RCS (H^- → p)**: 0.4 → 3 GeV
- **MLF**
- **MR**: 3 → 30 GeV (p)
- **p/Hi to HD**
- **U^{86+} → U^{92+}**: 0.727 AGeV
- **U^{92+}**: 0.727 → 11.15 AGeV
- **U^{86+} → U^{92+}**: 61.8 → 735.4 AMeV
- **p** → **NU**
- **HI (under planning)**
- **Figures: Not to scale**

P.K. Saha
HIWS-2016
Key issues to realize HI acceleration

We should meet the goal without intercepting any of the existing/planned programs with proton beam.

Four following serious issues, particularly with RCS must be cleared.

- Simultaneous operation with proton for MLF and HI for MR must be done.
- Most of the machine parameters fixed for p must be used for HI (At present, no choice for changing most of the parameters between cycles).
- Vacuum pressure level: $\sim 10^{-8}$ Torr (no problem for p). Not satisfied for HI w/ lower charge states (U^{86+} is thus considered).

- New HI injection system

P.K. Saha
HIWS-2016
How HI scheme works in RCS

RCS beam delivery pattern

5.52s (MR for HD)

40ms
MLF (p)
1 2 3 4 5 ... 134
MR (p/HI)
1 2 3 4
MLF (p)
1 2 3 ...

PB pattern

MR operates for either NU or HD
When MR operates for HD (5.52s), No. of RCS cycles: $25 \times 5.52 = 138$
\rightarrow 134 RCS cycles to MLF, 4 to MR

◎ Only when MR runs HI, RCS injects HI in the MR cycle.
\rightarrow No conflict with MLF/NU
HI injection system in the RCS

Place: At the end of extraction section.

- Only available space.

Scheme: One turn injection from the HI booster.

- By using 1 or 2 kickers. Simple injection system.
Overview of the RCS and latest performance with proton beam
Overview of 3-GeV RCS

Design parameters:

Particle
- Particle: \(p \)
- Circumference: 348.333 m
- Superperiodicity: 3
- Harmonic number: 2
- No of bunch: 2

Injection energy
- Injection energy: 400 MeV

Extraction energy
- Extraction energy: 3 GeV

Repetition rate
- Repetition rate: 25 Hz

Particles per pulse
- Particles per pulse: \(8.3 \times 10^{13} \)

Output beam power
- Output beam power: 1 MW

Transition gamma
- Transition gamma: 9.14 GeV

Collimator Limit
- Collimator Limit: 4 kW (3% @ inj. beam power)

Extracted 3 GeV protons are simultaneously delivered to the neutron and muon production targets in the MLF (97%) as well as to the MR (3% @HD opr.).
RCS scheme for proton

- **Fast Extraction**
- **Injection**
- **Acceleration**

Time (ms):
- 0
- 20
- 40

B (T):
- 0.28
- 1.13

Intermediate pulses
- 456ns
- 814ns

Multi-turn H- stripping injection

Longitudinal painting

Closed orbit variation for painting

Painting area

Transverse painting (H plane). Done in the V plane too.

Large acceptance:
\[\varepsilon_{tr} > 486\pi \text{ mm mrad, } \Delta p/p > \pm 1\% \]
RCS 1 MW beam study results

- Successfully demonstrated acceleration and extraction of 1 MW-equivalent beam power.
- Beam loss at 1 MW: <0.2% and only at injection energy -- mostly due to the foil scattering.

Experimental results:
Circulating beam intensity measured by a CT

- 8.41×10^{13} ppp: 1.01 MW-eq.
- 7.86×10^{13} ppp: 0.944 MW-eq.
- 6.87×10^{13} ppp: 0.825 MW-eq.
- 5.80×10^{13} ppp: 0.696 MW-eq.
- 4.73×10^{13} ppp: 0.568 MW-eq.

\[\rightarrow \] Demonstrates RCS potential to achieve a rather high intensity HI beam too.
RCS proton beam power capability

--- Space charge limitation

Laslett tune shift at injection energy:

\[
\Delta \nu = - \frac{r_p n_t}{2\pi \beta^2 \gamma^3 \varepsilon B_f}
\]

- \(r_p \): classical radius of proton
- \(n_t \): no. of protons in the ring
- \(\beta, \gamma \): relativistic parameters
- \(\varepsilon \): transverse painting emittance

 \((100\pi \text{ mm mrad})\)
- \(B_f \): Bunching factor (0.4)

<table>
<thead>
<tr>
<th>(E_{\text{inj}}) (MeV)</th>
<th>ppp (x10(^{13}))</th>
<th>Beam power at (E_{\text{ext}}) (MW)</th>
<th>(\Delta \nu)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>4.5</td>
<td>0.54</td>
<td>-0.53</td>
<td>Achieved</td>
</tr>
<tr>
<td>400</td>
<td>8.33</td>
<td>1</td>
<td>-0.33</td>
<td>Achieved</td>
</tr>
<tr>
<td>400</td>
<td>11.0</td>
<td>1.3</td>
<td>-0.43</td>
<td>Reasonable</td>
</tr>
<tr>
<td>400</td>
<td>13.3</td>
<td>1.6</td>
<td>-0.53</td>
<td>Reasonable</td>
</tr>
</tbody>
</table>
Tune footprint (Simulation)

Trans. painting (ε_{tr}) = 100\(\pi\) mm mrad
Longitudinal painting: Full ($B_1=0.4$)
$V2/V1 = 0.8\%$, Δp offset = -0.2%
$\phi 2 = -100$deg.

Black: 181 MeV injection
4.5E13/pulse (0.54 MW)

Red: 400 MeV injection
12.5E13/pulse (1.5 MW)
Simulation for U^{86+} acceleration in the RCS

Code: ORBIT-3D

Steps:
1. Single particle w/o SC
2. Multi-particle w/ SC

- BM, QM, Sextuples are kept unchanged as optimized for 1MW proton (for MLF).
 → Those can’t be changed pulse-to-pulse.

- rf patterns are differently used.
 → Upgrades might be necessary.
 (may not be a big issue!)

Injection energy: 61.8 MeV/u
Extraction energy: 735 MeV/u
→ (1) Successfully confirmed by the single particle simulation.
(2) Multi-particle simulations w/ SC

Space charge limit:

Laslett tune shift:

$$\Delta \nu \approx -\frac{q^2}{A} \frac{r_p n_t}{2\pi \beta^2 \gamma^3 \varepsilon B_f}$$

For 1 MW proton: $8.33 \times 10^{13}/2b$

$\rightarrow 4.2 \times 10^{13}/b$

<table>
<thead>
<tr>
<th>Particle</th>
<th>ppb</th>
<th>$\Delta \nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4.2×10^{13}</td>
<td>-0.33</td>
</tr>
<tr>
<td>U^{86+}</td>
<td>1.1×10^{11}</td>
<td>-0.33</td>
</tr>
</tbody>
</table>

Consistent with numerical estimation!
(2) Transverse and longitudinal beam distributions

Inj. beam parameters:

<table>
<thead>
<tr>
<th>Inj. turn</th>
<th>No of bunch</th>
<th>Intensity ($\times 10^{11}$)</th>
<th>Beam shape</th>
<th>Δs (ns)</th>
<th>$\Delta p/p$ (%)</th>
<th>ε_{tr} (π mm mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>Gaussian</td>
<td>1180</td>
<td>± 0.9</td>
<td>100</td>
</tr>
</tbody>
</table>

Black: injection
Red: extraction

$>99.9\%$ transverse emittances of the extracted beam are within 3-50BT collimator aperture.

✓ Collimated beam power $<<$ Collimator limit
✓ Satisfy very strict beam quality for MR injection.
(2) **Beam survival**

- No any unexpected beam losses.
- Beam survival > 99.95% even for 1.1×10^{11}/b of U$^{86+}$ ions
- Beam loss localizes at ring collimator.
- However, intensity dependence beam loss is slightly non linear.
 - Further improvement is possible by optimizing injected beam shape and/or rf patterns.
- Gives bottom line for the new booster parameters.

U$^{86+}$: 1.1×10^{11} → stripping at 3-50BT → U$^{92+}$: $\sim 1 \times 10^{11}$/RCS cycle
4 RCS cycles injection in the MR: 4×10^{11}/MR cycle!
Summary

In order to realize HI physics program in J-PARC, a new HI accelerator scheme by utilizing most of the existing facilities are proposed.

RCS plays the most important role to realize HI program in J-PARC. Possibilities of HI acceleration in the RCS are reported.

Studies are done within the designed and fixed frame for proton in the RCS.

- More than 10^{11}U^{86+} ions can be achieved without any significant beam losses.
- No serious beam dynamics issues even up to such an intensity.

→ Gives $4 \times 10^{11} \text{U}^{92+}$ ions/cycle (5.52s) in the MR and quite more than experimental requirement at present.

Design studies of new HI Booster is in good progress.

→ Harada-san (Tomorrow)

The RCS including proposed new HI accelerator scheme has no interference/conflict with existing programs that make use of proton beams.
Thank you for your attention!

May be in near future
Backup slides
HI Accelerator Scheme

Diagram:
- **H⁻ LINAC** to **RCS** to **MR**
- **HI LINAC** to **New HI Booster** to **RCS** to **MR**
- **GAS stripper**:
 - U³⁵⁺ → U⁶⁶⁺
- **Foil stripper**:
 - U⁶⁶⁺ → U⁸⁶⁺ (61.8 MeV/u)
 - U⁸⁶⁺ → U⁹²⁺ (727 MeV/u)

Table:

<table>
<thead>
<tr>
<th>E (MeV/u)</th>
<th>LINAC out</th>
<th>Booster out</th>
<th>Stripper 2 Carbon</th>
<th>RCS out</th>
<th>Stripper 3 Cu<Zₜ<Tₐ</th>
<th>MR out</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>67.0</td>
<td>61.8</td>
<td>735.4</td>
<td>727.0</td>
<td>11.15 GeV/u</td>
<td></td>
</tr>
<tr>
<td>Q 35</td>
<td>66+-2</td>
<td>86</td>
<td>86</td>
<td>92</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>
Present simulation background

Tool: ORBIT 3-D space charge code:

➔ Originally developed at the SNS in Oak Ridge.
➔ Successfully adopted in the RCS, especially for beam instability simulation.
(Ext. kicker impedance is a significant beam instability source in the RCS.)

● *Space charge effect is strongly connected to the beam instability.*
-- First an accurate space charge simulation was demonstrated.

Beam instability at 1 MW: Simulation vs. Measurement

The next step was to determine optimum parameters to avoid beam instability at 1 MW.

Even DC chromatic correction gives beam instability at 1 MW!
➔ Confirmed by measurements!!

ORBIT can be used HI beam simulation in the RCS