Hadron Physics at J-PARC - current hadron physics programs & future possibility for J-PARC HI -

M. Naruki (Kyoto Univ.) 2016/1/20 at Reimei WS

Contents

- Introduction
- Physics programs at the J-PARC Hadron Facility
 - Recent results
 - Near future programs
- Possibilities in HIC at J-PARC
- Summary

Hadron Structure

- composed of quarks and gluons
- How do they composed to produce its experimentally observed properties?
- description based on QCD
 - understand degree of freedom and interaction between them

probe to investigate matter

Beam line specifications

Name	Particles	P _{max}	Intensity	
K1.8	π, K, p	2.0 GeV/c	10 ⁶ K ⁻ 's	
K1.8BR	π, K, p	1.1 GeV/c	10 ⁶ K ⁻ 's	
KL	neutral K			
K1.1BR	π, K, p	0.8 GeV/c	10 ⁶ K ⁻ 's	
K1.1	π, K, p	1.1 GeV/c	10 ⁶ K ⁻ 's	
High-p	proton	31 GeV/c	10 ¹⁰ p	new
High-p	π/K/p	20 GeV/c	10 ⁶ K⁻ ′s	
secondary	(unseparated.)			J

 $\sqrt{s} = 2.2 \text{ GeV} \rightarrow \sqrt{s} = 6.2 \text{ GeV}$ in 20GeV/c π p/Kp reactions

Current Hadron Physics Programs

Hadron Physics

- Exotics
 - multiquark systems
 - pentaquark Θ^+
 - H dibaryon : J.K. Ahn's talk on Tuesday
 - hadronic molecular states
 - Λ(1405)
 - kaonic nuclei

Dilepton

Exotics : Recent Results

- Search for pentaquark Θ^+ d σ /d Ω =0.28µb/sr (lab.) Γ <0.36MeV
- Search for kaonic nuclei k⁻pp in π /K-induced reactions
 - Sakuma-san's talk on Monday
- ► Spectral information of ∧(1405)

Toward Baryon Spectroscopy

- charmed baryon spectroscopy (E50) at the newly constructed high-momentum beamline
 - talk by K. Shirotori-san on Monday

Missing mass spectroscopy: 20GeV/c π^- + p \rightarrow Y_c*+ + D*-

Dilepton Measurement

previous experiment KEK-PS E325 near future experiment : J-PARC E16

HIC vs. Cold Nuclear Matter

Dilepton measurement in $pA \rightarrow \phi X$ KEK-PS E325

R. Muto et al., PRL 98(2007)042501

Di-electron measurement at J-PARC

- vector meson production in 30GeV/c p+A
 - ▶ high rate capability ~10⁷ interaction
 - GEM Tracker
 - electron ID : HBD + Lead Glass
 Calorimeter
 - Large Acceptance (5 X E325)
- high statistics & high mass resolution
- systematic study of in-medium mass
 - velocity dependence
 - A dependence $(p \rightarrow Pb)$

Expected Signals

momentum dependence of mass

HIC vs. cold nuclear matter

Recent Hypernuclear Experiments

- J-PARC E13 : Hosomi-san's talk on Tuesday
- J-PARC E05 : pilot run last autumn

Hadron Physics at J-PARC HI

- Structure of Hadron
 - production rate <-> structure
- Dilepton
 - spectral information at high density

Nuclear Physics : Hypernuclei

 production of hypernuclei which is not significantly produced in elementary productions

Structure of Hadron

Experimental Approaches

- properties such as mass, width
- decay pattern
- reaction rate

Reactions

- reactions between hadrons at low/mid-energies
- production rate in HIC
 - production rate

Suppression of $\Lambda(1520)$

- Measured $\Lambda(1520)/\Lambda(1115)$ is smaller than thermal model prediction
- coalescence model works taking into account the p-wave state of strange quark in Λ(1520)
 - 0.5~0.6, Y. Kanada-En'yo & Müller, PRC 74 (2006) 061901(R)
 - coalescence factor :
 s-wave : 0.360
 p-wave : 0.093
 d-wave : 0.029

Production Rate based on Statistical Model 2q/3q configurations are in the range of 0.2 ~ 2 (gray zone).

Coalescence / Statistical model ratio at RHIC

Coalescence / Statistical model ratio at LHC

ExHIC, PRL 106 (2011) 212001

22

quark / molecular coalescence

yield of compact multiquark states

 ~1/10 of normal 2q/3q, since the coalescence of additional quarks is suppressed.

molecular states

- larger yields from coalescence model compared with that of statistical model
- large yield of loosely bound states
 - large size <-> large coalescence probability
 - cf. $\Lambda(1405)$ as a deeply bound state has the smaller yield

production rate in HIC may be a good tool to approach the structure of hadron

Strangeness Production

- agree with the statistical model
- ratios to pions seem to be enhanced at the J-PARC energies.
 - S=-1 $\Lambda/\pi \sim 0.1$
 - S=-2 $\Xi/\pi \sim 0.01$
 - S=-3 $\Omega/\pi \sim 0.001$

at maximum

X. Zhu et al., JoP C.S.509(2014)012004

Hypernuclear Production in HIC

- at RHIC/LHC energies : yields are consistent with the statistical model
- HypHI exp. $6Li + 12C @ 2.7GeV : {}^{3}_{\Lambda}H ~~4\mu b$
- FOPI exp. Ni + Ni @ 2.67GeV $^{3}_{\Lambda}$ H/ $\Lambda \sim 0.52$

Hypernuclear Production

Cross Section

- $\sim \text{GeV/c} \pi + \text{C} \rightarrow \text{K} + \frac{12}{3} \text{C} : \sim 10 \mu \text{b/sr}$
- ~ GeV/c K + C \rightarrow K + ¹²_EBe : ~ 0.1µb/sr
- ► ~ GeV/c A + C \rightarrow ³ H + X : ~0.1µb
- 5 AGeV A + A in the coalescence model
 single-Λ hypernuclei ~µb
 double-Λ hypernuclei 0.1nb
 Ξ hypernucleai ~ 10nb
 Statistical Model : largest yield is expected at H PARC HI especially for double-Λ J-PARC HI especially for double- Λ hypernuclei
- 10⁶ K beam * 1% target : 10⁴ int. 10¹⁰ A beam * 0.1% target : 10⁷ int.

Summary

- The operation of the J-PARC Hadron Facility has been successfully resumed and a variety of results has been reported.
 - search for Θ
 - Kpp productions in meson-induced reactions
 - hypernuclei
- Dilepton measurement & Charmed baryon spectroscopy will be performed at the highmomentum beamline being newly constructed.
- Future progress & complimentary studies are expected in the J-PARC HI project.