Study the QCD Phase Structure with Beam Energy Scan at STAR

Xiaofeng Luo (罗晓峰)

Central China Normal University, Wuhan Jan. 20, 2016

Outline

Introduction

Experimental Facility

Selected Experimental Highlights

Summary and Outlook

QCD Thermodynamics (μ_B =0)

Akira Ukawa, arXiv:1501.04215

QCD EoS : Major goals in LQCD since 1980s, Different groups approach similar conclusion.

Rapid rise of the energy density:

- Rapid increase in degrees of freedom due to transition from hadrons to quarks and gluons.
- Smooth crossover transition.

WuppertalBudapest, JHEP 1009, 073 (2010). HotQCD, Phys.Rev. D85, 054503 (2012).

Chiral susceptibility peaks at T_c:

$$\chi_{\bar{\Psi}\Psi} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial m^2}$$

Chiral symmetry restoration: temperature: $T_c \sim 154 + /-9$ MeV

Relativistic Heavy-ion Collisions: Little Bang

Courtesy of Paul Sorensen and Chun Shen

➢ QGP and phase diagram studied in high energy collisions of nuclei since 1987 at AGS (5 GeV), 1996 at SPS (17 GeV), since 2000 at RHIC (200 GeV), since 2010 at the LHC at √s_{NN} = 2.76 TeV.

Indirect evidences for strongly couple and liquid like QGP formed in high energy nuclear collisions.

Jet Quenching

The QCD Phase Diagram

Rept. Prog. Phys. 74 (2011).

K. Fukushima & T. Hatsuda Baryon Chemical Potential μ_{B}

- 1. Properties of QGP ?: T dependence, at $\mu_B \sim 0$, of EoS, η/s , q^A , etc.
- 2. Turning off the QGP signals at low energies ?

3. 1st order phase boundary and QCD critical point ?

STAR Detector System

Xiaofeng Luo Reimei Workshop, J-PARC, 2016

RHIC Beam Energy Scan-I (2010-2014)

1.	F			-	_	7.7 GeV	39 GeV	200 GeV
√S _{NN} (GeV)	Events (10 ⁶)	Year	μ _B (MeV)	I _{CH} (MeV)	/c)	⁴ π TPC Au+Au 7.7 GeV ^{3.5} STAR Prejiminary	 π TPC Au+Au 89 GeV 35 GTAR Preliminary 36 GTAR Preliminary 37 GTAR Preliminary 38 GTAR Preliminary 39 GTAR Preliminary 30 GTAR Preliminary 31 GTAR Preliminary 32 GTAR Preliminary 33 GTAR Preliminary 34 GTAR Preliminary 34 GTAR Preliminary 34 GTAR Preliminary 35 GTAR Preliminary 36 GTAR Preliminary 36 GTAR Preliminary 37 GTAR Preliminary 38 GTAR Preliminary 39 GTAR Preliminary 30 GTAR Preliminary 31 GTAR Preliminary 32 GTAR Preliminary 34 GTAR Preliminary 35 GTAR Preliminary 36 GTAR Preliminary 37 GTAR Preliminary 38 GTAR Preliminary 39 GTAR Preliminary 30 GTAR Preliminary 31 GTAR Preliminary 32 GTAR Preliminary 34 GTAR Preliminary 35 GTAR Preliminary 36 GTAR Preliminary 37 GTAR Preliminary 38 GTAR Preliminary 39 GTAR Preliminary 30 GTAR Preliminary 31 GTAR Preliminary 32 GTAR Preliminary 34 GTAR Preliminary<	⁶ π T ^{PC} Aŭ÷Au 200 GeV STAP Prei⊮minary
200	350	2010	25	166	Se<	(02.5- (02.5- 2- - - - - - - - - - - - - - - - - -	25	
62.4	67	2010	73	165	9) E			
39	39	2010	112	164	intu	K TPC Au+Au 7,7 GeV 355 STAP Prejiminary	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	K TPC Au#Atr 200 GeV STAR Preliminary
27	70	2011	156	162	ome	(GeV) (GeV)		
19.6	36	2011	206	160	Š			
14.5	20	2014	264	156	erse	3.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	p prc Aural 200 Gev STAR Preliminary
11.5	12	2010	316	152	NSU	G (2) ² - 1.5 ¹ - 1.5	2- 1.5-	(Gev)
7.7	4	2010	422	140	Tra			

1) Largest data sets versus collision energy

Particle Rapidity

2) STAR: Large and homogeneous acceptance, excellent particle identification capabilities. Important for fluctuation analysis!

 $(\mu_B,\,T_{CH})$: J. Cleymans et al., PRC 73, 034905 (2006)

arXiv:1007.2613

Xiaofeng Luo

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Main Goals: Study QCD Phase Structure

- Search for the 1st order phase transition.
- Search for the critical point.

Freeze Out Dynamics

STAR: J. Adams, et al., NPA757, 102(05); X.L. Zhu, NPA931, c1098(14); L. Kumar, NPA931, c1114(14)

Xiaofeng Luo

Transverse Dynamics

NA49: Phys. Rev. C 78, 4 (2008), Physics Lett. B 491, 59 (2000). STAR: Phys. Rev. C 49, 064903 (2009). ALICE: Phys. Rev. C91, 024609 (2015). M. Nasim et al., Advances in High Energy Physics, 197930 (2015).

Excitation function of particle $< m_T > -m_0$ and transverse energy/mul. show a flat pattern above ~ 8 GeV.

L. van Hove, PLB 118, 138 (1982).

Indication of 1st order phase transition ?

```
Fit spectra: 1/m_T dN/dm_T \sim exp(-m_T/T).
Temperature: <m_T > -m_0 \sim T
Entroy: dN/d\eta \sim log(\sqrt{s_{NN}}).
```


Directed Flow v₁

- Mid-rapidity net-proton dv₁/dy published in 2014 by STAR, except the point at 14.5 GeV
- 2) Minimum at $\sqrt{s_{NN}}$ = 14.5 GeV for net-proton, but net-Kaon data continue decreasing as energy decreases
- 3) At low energies, baryon stopping effects are important.

H. Stoecker, Nucl. Phys. A 750, 121 (2005).
D.H. Rischke et al. HIP1, 309(1995)
J. Steinheimer et al., arXiv:1402.7236
P. Konchakovski et al., arXiv:1404.276

Indicate softening of EoS due to the first order phase transition ?

Elliptic flow v_2

- Number of constituent quark (NCQ) scaling in v₂
 > partonic collectivity
 > deconfinement in highenergy nuclear collisions
- 2) At $\sqrt{s_{NN}}$ < 11.5 GeV, the universal NCQ scaling in v₂ is broken, consistent with hadronic interactions becoming dominant

v₂ and Model Comparison

(a) Hydro + Transport: Baryon results fit [J. Steinheimer, et al. PRC86, 44902(13)]

- (b) NJL model:. Sensitive to hadronic potential. [J. Xu, et al., PRL112.012301(14)]
- (c) Pure Hydro solution with μ_B , viscosity: Chemical potential μ_B and viscosity η/s driven! [Hatta et al. arXiv:1502.05894//1505.04226//1507.04690]

Triangle Flow : v_3^2 {2}

J. Auvinen and H. Petersen, Phys. Rev. C88, 397 (2013).

STAR, arXiv:1601.01999.

- Require low η/s early QGP phase to transfer initial fluctuations to a significant v₃.
- \succ v₃ vanishes for peripheral collisions at lowest RHIC BES energy.
- Minimum are observed for centralities bins in 0-50% collisions for v₃²/n_{ch,pp.}

Energy Dependence of Di-electrons

Reimei Workshop, J-PARC, 2016

Bulk-penetrating probe:

- M_{ee} ≤ 1GeV/c²: In-medium broadened ρ, model results* are consistent with exp. data. (* driven by the baryon density in the medium)
- 2) 1≤M_{ee} ≤ 3GeV/c²: QGP thermal radiation? HFT: Charm contributions.

3) High statistics data are needed, **BES-II!**

- STAR: (200GeV data) sub. to PRL. 1312.7397
- R. Rapp: PoS CPOD13, 008(2013)
- O. Linnyk et al, PRC85, 024910(12)

Fluctuations are sensitive to the thermodynamic properties of the system and can be used to probe the QCD phase transition.

1. Fluctuations signals the QCD Critical Point.

M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998). Cited:928 M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. D 60, 114028 (1999). Cited:708

Probe singularity of the equation of state: Divergence of the fluctuations.

2. Fluctuations signals the Quark Deconfinement.

S. Jeon and V. Koch, Phys. Rev. Lett. 83, 5435 (1999). Cited: 193.

S. Jeon and V. Koch, Phys. Rev. Lett. 85, 2076(2000). Cited: 470.

M. Asakawa, U. Heinz and B. Muller, Phys. Rev. Lett. 85, 2072 (2000). Cited:443.

Proposed experimental observables:

- 1. Pion multiplicity fluctuations.
- 2. Mean p_T fluctuations.
- 3. Particle ratio fluctuations
- 4. Fluctuations of conserved quantities.

1. Higher sensitivity to correlation length (ξ) and probe non-gaussian fluctuations near the Critical Point.

$$\left\langle \left(\delta N \right)^3 \right\rangle_c \approx \xi^{4.5}, \qquad \left\langle \left(\delta N \right)^4 \right\rangle_c \approx \xi^7$$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).
M. Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009).

2. Direct connection to the susceptibility of the system.

$$\chi_q^{(n)} = \frac{1}{VT^3} \times C_{n,q} = \frac{\partial^n (p/T \wedge 4)}{\partial (\mu_q)^n}, q = B, Q, S$$

S. Ejiri et al, Phys.Lett. B 633 (2006) 275.
Cheng et al, PRD (2009) 074505. B. Friman et al., EPJC 71 (2011) 1694.
F. Karsch and K. Redlich, PLB 695, 136 (2011).
S. Gupta, et al., Science, 332, 1525(2012).
A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) // P. Alba et al., arXiv:1403.4903

Xiaofeng Luo

"Shape" of the fluctuations can be measured: non-Gaussian moments.

Susceptibility ratios \Leftrightarrow Cumulant Ratios (Cancel V dependence) $\frac{\chi_{q}}{\chi_{q}^{2}} = \kappa \sigma^{2} = \frac{C_{4,q}}{C_{2,q}} \qquad \qquad \frac{\chi_{q}}{\chi_{q}^{2}} = S \sigma = \frac{C_{3,q}}{C_{2,q}}, \qquad (q=B, Q, S)$

Xiaofeng Luo

Results Published in 2014

Net-proton (0.4< p_T <0.8 GeV/c): All data show deviations below Poisson for $\kappa\sigma^2$ at all energies. Larger deviation at $\sqrt{s_{NN}} \sim 20$ GeV

Net-charge (0.4<pT<2 GeV/c) Need more statistics.

Poisson: κσ²=1

Net-proton: STAR: **PRL112**, 32302(2014) Net-charge: STAR: **PRL113**,092301(2014)

New Net-proton Analysis: Larger p_T Acceptance

TOF is used for Identify p/pbar in addition with TPC to extend the p_T coverage.

Xiaofeng Luo

Forth Order Fluctuations: Net-proton

$$\kappa \sigma^2 = \mathbf{C_4} / \mathbf{C_2}$$

Non-monotonic trend is observed for the 0-5% most central Au+Au collisions. Dip structure is observed around 19.6 GeV.

Separating and flipping for the results of 0-5% and 5-10% centrality are observed at 14.5 and 19.6 GeV. (Oscillation Pattern observed !)

 UrQMD (no CP) results show suppression at low energies.
 Consistent with the effects of baryon number conservation.

Systematic errors: 1) Uncertainties on efficiency, 2) PID, 3) Track Cuts.

Sign of Kurtosis : Model and Theoretical Calculations

Xiaofeng Luo

Oscillation Pattern: Signature of Critical Region ?

"Oscillation pattern" around baseline for Kurtosis may indicate a signature of critical region.

κσ ²	0-5%	5-10%		
14.5 GeV	1+Pos.	1+Neg.		
19.6 GeV	1+Neg.	1+Pos.		

Propose to scan 16.5 GeV (μ_B =238 MeV) or even finer step between 14.5 and 19.6 GeV, expect to see bigger dip and no separation for the results of the 0-5% and 5-10%.

STAR Upgrades and BES Phase-II (2019-2020)

iTPC proposal: <u>http://drupal.star.bnl.gov/STAR/starnotes/public/sn0619</u> Larger rapidity acceptance crucial for BES-II whitepaper: <u>http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598</u> further critical point search with net-protons

- Electron cooling upgrade will provide increased luminosity ~ 3-10 times.
- > Inner TPC(iTPC) upgrade : $|\eta| < 1$ to $|\eta| < 1.5$. Better dE/dx resolution.
- Forward Event Plane Detector (EPD): Centrality and Event Plane Determination.
 1.8 < |η| < 4.5

Event Statistics for BES II at RHIC

√S _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	Weeks	μ _B (MeV)	T _{CH} (MeV)
200	350	2010		25	166
62.4	67	2010		73	165
39	39	2010		112	164
27	70	2011		156	162
19.6	400 / 36	2019-20 / 2011	3	206	160
14.5	300 / 20	2019-20 / 2014	2.5	264	156
11.5	230 / 12	2019-20 / 2010	5	315	152
9.2	160 / 0.3	2019-20 / 2008	9.5	355	140
7.7	100 / 4	2019-20 / 2010	14	420	140

1) Event statistics driven by QCD CP search and di-electron measurements

Summary

RHIC e-cooling and iTPC upgrades bring BES-II: a **new era** for study the QCD phase structure at high net-baryon region (200 < μ_B < 420 MeV).

Fixed-target experiment at extreme large net-baryon density, $2 < \sqrt{s_{NN}}$ < 5 GeV for a systematic study of critical behavior with high precision.

Discovery potential at high baryon density region:

- 1) The QCD critical point (region) and phase boundary.
- 2) Properties with Chiral symmetry.

Thank you !

Number of constituent quark (NCQ) scaling

