Effects of Λ NN three-body force in B_{Λ} values of hypernuclei

Masahiro ISAKA (RIKEN)

Collaborators: Y. Yamamoto, Th.A. Rijken

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (nucleon, hyperon)
 - hyperon-nucleon (YN)
 - hyperon-hyperon (YY)
 A major issue in hypernuclear physics

Structure: To understand many-body system of nucleons and hyperon

- Addition of hyperon(s) shows us new features of nuclear structure
 Ex.) Structure change by hyperon(s)
 - No Pauli exclusion between N and Y
 - YN interaction is different from NN

"Hyperon as an impurity in nuclei"

Today's talk: "structure of Λ hypernuclei" and " Λ binding energy"

Structure of Λ hypernuclei

Λ hypernuclei observed so far

- Concentrated in light Λ hypernuclei
- Most of them have well pronounced cluster structure

Taken from O. Hashimoto and H. Tamura, PPNP **57**(2006),564.

Toward heavier and exotic Λ hypernuclei

Experiments at J-PARC, JLab and Mainz etc.

• Hypernuclear chart will be extended to heavier regions

"Various structures of hypernuclei"

How do core nuclei affect the mass dependence of B_{Λ} ? "clustering/deformations", "Density dependence of interactions"

${\rm B}_{\Lambda}$ as a function of mass number A

Observed data of Λ binding energy B_{Λ} (9 \leq A \leq 51)

Do core nuclei affect the mass dependence of B_{Λ} ?

"clustering/deformations", "Density dependence of interactions"

Bertini *et al.*, NPA**83**,306(1979), Davis, Juric , *et al.*, NPB**52**(1973), Davis, NPA**547**,369(1992);NPA**754**,3c(2005), Ajimura *et. al.*, NPA**639**(1998)93c, Pile *et al.*, PRL**66**,2585(1991), Hotchi *et al.*, PRC**64**, 044302(2001), Hashimoto and Tamura, PPNP**57**,564(2006), Tang, *et. al.*, PRC**90**,034320(2014).

Background of our research

Knowledge of ΛN two-body effective interaction

- Study of light (s, p-shell) Λ hypernuclei
 - Accurate solution of few-body problems ^[1]
 - ΛN G-matrix effective interactions ^[2]
 - Increases of experimental information^[3]

Development of theoretical models

Through the study of unstable nuclei

Ex.: Antisymmetrized Molecular Dynamics (AMD)^[4]

- AMD can describe dynamical changes of various structure
- No assumption on clustering and deformation

AMD calculation by using YNG-ESC

[1] E. Hiyama, NPA **805** (2008), 190c, [2] Y. Yamamoto, *et al.*, PTP Suppl. **117** (1994), 361., [3] O. Hashimoto and H. Tamura, PPNP **57** (2006), 564., [4] Y. Kanada-En'yo *et al.*, PTP **93** (1995), 115.

We extended the AMD to hypernuclei

HyperAMD (Antisymmetrized Molecular Dynamics for hypernuclei)

Hamiltonian

$$\hat{H} = \hat{T}_{N} + \hat{V}_{NN} + \hat{T}_{\Lambda} + \hat{V}_{\Lambda N}$$

NN : Gogny D1S Λ N : YNG interaction

Wave function

- Nucleon part: Slater determinant Spatial part of single particle w.f. is described as Gaussian packet
- Single particle w.f. of Λ hyperon: Superposition of Gaussian packets
- Total w.f.:

$$\psi(\vec{r}) = \sum_{m} c_{m} \varphi_{m}(r_{\Lambda}) \otimes \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$

$$\begin{split} \varphi_{N}(\vec{r}) &= \frac{1}{\sqrt{A!}} \det\left[\varphi_{i}(\vec{r}_{j})\right] \\ \varphi_{i}(r) &\propto \exp\left[-\sum_{\sigma=x,y,z} v_{\sigma}(r-Z_{i})_{\sigma}^{2}\right] \chi_{i} \eta_{i} \quad \chi_{i} = \alpha_{i} \chi_{\uparrow} + \beta_{i} \chi_{\downarrow} \\ \varphi_{\Lambda}(r) &= \sum_{\sigma=x,y,z} c_{m} \varphi_{m}(r) \\ \varphi_{m}(r) &\propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_{\sigma}(r-z_{m})_{\sigma}^{2}\right] \chi_{m} \quad \chi_{m} = a_{m} \chi_{\uparrow} + b_{m} \chi_{\downarrow} \end{split}$$

$\Lambda {\rm N}$ interaction used

YNG interaction derived from ...

ESCO8c + 2-body including ΛΝ-ΣΝ coupling

MPP: repulsion which is essential with high dens. TBA: phenomenological 3 body attraction

$$V_{\Lambda N}(r;k_F) = \sum_{i=1}^{3} \left(a_i + b_i k_F + c_i k_F^2 \right) \exp\left(-r^2/\beta_i^2\right)$$

NNN part of MPP + TBA: scattering data of ¹⁶O + ¹⁶O, and saturation property **TBA with** Λ : to reproduce observed spectra of ⁸⁹_{Λ}Y

 \longrightarrow Enough stiff EoS to give 2M $_{\odot}$ maximum mass of neutron star

Yamamoto, Furumoto, Yasutake and Rijken, PRC**88**,022801(2013); PRC**90**,045805(2014).

⁸⁹ \ Y d \mathbf{s} pESC -26.5-19.0-11.4MPa -24.0-17.3-10.5-3.9-17.6-23.7-10.9-3.7exp

k_F determined by density

exp: O. Hashimoto and H. Tamura, PPNP 57(2006),564.

• Averaged density approximation(ADA):

$$| \rho \rangle = \int dr^3 \rho_N(\mathbf{r}) \rho_\Lambda(\mathbf{r}) \qquad k_F = \left(\frac{3\pi^2 \langle \rho \rangle}{2}\right)^{1/3}$$

No free parameter except for TBA

Theoretical framework: HyperAMD

Procedure of the calculation

Variational Calculation $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$ • Imaginary time development method $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$ • Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

Ex.) ⁸Be

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

Ex.) ⁸Be

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

For hypernuclei

Theoretical framework: HyperAMD

Procedure of the calculation

• Imaginary time development method $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$

• Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Angular Momentum Projection

$$\left|\Phi_{K}^{s};JM\right\rangle = \int d\Omega D_{MK}^{J^{*}}(\Omega) R(\Omega) \Phi^{s+}$$

Generator Coordinate Method(GCM)

•Superposition of the w.f. with different configuration •Diagonalization of $H^{J\pm}_{sK,s'K'}$ and $N^{J\pm}_{sK,s'K'}$

$$H_{sK,s'K'}^{J\pm} = \left\langle \Phi_{K}^{s}; J^{\pm}M \left| \hat{H} \right| \Phi_{K'}^{s'}; J^{\pm}M \right\rangle$$
$$\left| \Psi^{J\pm M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi_{K}^{s}; J^{\pm}M \right\rangle$$
$$\left| \Psi^{J\pm M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi_{K}^{s}; J^{\pm}M \right\rangle$$

 $\kappa < 0$

M. Isaka, et al., PRC89, 024310(2014)

Applications of HyperAMD (${}^{41}_{\Lambda}$ Ca)

- Definition: $\epsilon_{\Lambda}(\beta) = E(^{41}_{\Lambda} Ca)(\beta) E(^{40}Ca)(\beta)$
- ε_{Λ} changes within 1 2 MeV as β increases

Difference of ϵ_{Λ} is mainly coming from ΛN potential energy

Why? — *"overlap between* Λ *and core"*

Applications of HyperAMD (${}^{41}_{\Lambda}$ Ca)

- ullet ϵ_Λ varies due to changes of overlap between Λ and N
 - Deformation of Λ distribution is small, while nuclear part is deformed

M. Isaka, M. Kimura, PRC92, 044326(2015)

Applications of HyperAMD ($_{\Lambda}$ Be)

Same trend as in ${}^{41}_{\Lambda}$ Ca, whereas smaller k_F is used in excited states

Results and Discussions

"mass dependence of B_{Λ} "

B_Λ as a function of mass number A

ECCORC + MDD + TRA			eta	γ	$\langle \rho \rangle$	k_F	$-B_{\Lambda}^{\text{calc}}$	$-B^{ m exp}_{\Lambda}$
	ESCUOL + IVIPP + IDA		0.50	2°	0.072	1.02	-8.1	-8.50 ± 0.12 [2
	repuisive attraction	$^9_{\Lambda}{ m Be}$	0.87	1°	0.060	0.96	-8.1	-6.71 ± 0.04
		$^{9}_{\Lambda}\mathrm{B}$	0.45	2°	0.072	1.02	-8.2	-8.29 ± 0.18 [2
-5		$^{10}_{\Lambda}{ m Be}$	0.57	1°	0.077	1.04	-9.0	-9.11 ± 0.22 [2
-10 -10	$\begin{bmatrix} (a) & & & & \\ & & & & \\ & & & & \\ & & & & $							-8.55 ± 0.18 [3
		$^{10}_{\Lambda}\text{B}$	0.58	1°	0.075	1.04	-9.1	-8.89 ± 0.12
		$^{11}_{\Lambda}\text{B}$	0.50	29°	0.081	1.06	-10.0	-10.24 ± 0.05
		$^{12}_{\Lambda}\text{B}$	0.39	48°	0.083	1.07	-11.3	-11.37 ± 0.06
								-11.38 ± 0.02
		$^{12}_{\Lambda}\mathrm{C}$	0.41	34°	0.086	1.08	-11.0	-10.76 ± 0.19
 ∽ 15	$\begin{bmatrix} 1^{13}_{\Lambda}C^{*} & 1^{16}_{\Lambda}O \end{bmatrix}$	$^{13}_{\Lambda}C$	0.45	60°	0.090	1.10	-11.7	-11.69 ± 0.19
÷-15	$\begin{bmatrix} 15 \\ 15 \\ 10 \end{bmatrix} = \begin{bmatrix} 15 \\ 10 \end{bmatrix} = \begin{bmatrix} 15 \\ 10 \end{bmatrix} = \begin{bmatrix} 28 \\ 28 \end{bmatrix} = \begin{bmatrix} 28 \\ 10 \end{bmatrix} = \begin{bmatrix} 28 \\ 10$	$^{14}_{\Lambda}C$	0.45	31°	0.093	1.11	-12.5	-12.17 ± 0.33
		$^{15}_{\Lambda}N$	0.28	60°	0.098	1.13	-12.9	-13.59 ± 0.15
	$\begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & &$	$^{16}_{\Lambda}O$	0.02	_	0.105	1.16	-13.0	-12.96 ± 0.05
-20		$^{19}_{\Lambda}O$	0.30	3°	0.110	1.18	-14.3	_
	$\Lambda Ca = \Lambda Ca = $	$^{27}_{\Lambda}Mg$	0.36	36°	0.125	1.23	-16.2	_
	20 Mass number A 40 60	$^{28}_{\Lambda}{ m Si}$	0.32	53°	0.125	1.23	-16.6	-17.1 ± 0.2 [9
		$^{32}_{\Lambda}\mathrm{S}$	0.28	0°	0.130	1.24	-17.6	-18.0 ± 0.5 [23
		$^{40}_{\Lambda}$ K	0.01	_	0.136	1.26	-19.4	_
		$^{40}_{\Lambda}$ Ca	0.03	_	0.136	1.26	-19.3	-19.24 ± 1.1 [2
		$^{41}_{\Lambda}$ Ca	0.13	12°	0.136	1.26	-19.5	_ `
		$^{48}_{\Lambda}{ m K}$	0.01	_	0.141	1.28	-20.2	_
		${}^{51}_{\Lambda}$ V	0.18	2°	0.151	1.31	-20.3	-20.51 ± 0.13 [2
		$^{59}_{\Lambda}$ Fe	0.26	23°	0.142	1.28	-21.7	-

B_{Λ} as a function of mass number A

HyperAMD w/ ESC08c + MPP + TBA successfully reproduces B_{Λ}

B_{Λ} as a function of mass number A

	ECCORC + MDD + TRA		β	γ	$\langle \rho \rangle$	k_F	$-B_{\Lambda}^{\mathrm{calc}}$	$-B^{ m exp}_{\Lambda}$
		$^{9}_{\Lambda}$ Li	0.50	2°	0.072	1.02	-8.1	-8.50 ± 0.12 [2
	repuisive attraction	$^9_{\Lambda}{ m Be}$	0.87	1°	0.060	0.96	-8.1	-6.71 ± 0.04
		$^{9}_{\Lambda}\mathrm{B}$	0.45	2°	0.072	1.02	-8.2	-8.29 ± 0.18 [2
-5		$^{10}_{\Lambda}\text{Be}$	0.57	1°	0.077	1.04	-9.0	-9.11 ± 0.22 [2
-5	-3 (b)							-8.55 ± 0.18 [3
	$ ^{A}Be \rightarrow 0$ ^{I0}D	$^{10}_{\Lambda}\text{B}$	0.58	1°	0.075	1.04	-9.1	-8.89 ± 0.12
	$\begin{bmatrix} & AB \\ & AB $	$^{11}_{\Lambda}B$	0.50	29°	0.081	1.06	-10.0	-10.24 ± 0.05
-10	\sim	$^{12}_{\Lambda}\text{B}$	0.39	48°	0.083	1.07	-11.3	-11.37 ± 0.06
	≥ -10 - $11 \mathbf{p}$							-11.38 ± 0.02
Me	$ \Delta \mathbf{D}$ $\Delta \mathbf{D}$ $\Delta \mathbf{D}$ $\Delta \mathbf{D}$ $\Delta \mathbf{D}$	$^{12}_{\Lambda}C$	0.41	34°	0.086	1.08	-11.0	-10.76 ± 0.19
 ∽15	$\begin{bmatrix} 1^{3}_{\Lambda}C^{*} & -1^{6}_{\Lambda}O \end{bmatrix}$	$^{13}_{\Lambda}C$	0.45	60°	0.090	1.10	-11.7	-11.69 ± 0.19
- -13	$-15N\pi^{\circ}$	$^{14}_{\Lambda}C$	0.45	31°	0.093	1.11	-12.5	-12.17 ± 0.33
	-15 -15 -10 -28 Si -15 -10 -20	$^{15}_{\Lambda}N$	0.28	60°	0.098	1.13	-12.9	-13.59 ± 0.15
	32 Mass number A	$^{16}_{\Lambda}O$	0.02	_	0.105	1.16	-13.0	-12.96 ± 0.05 [2]
-20		$^{19}_{\Lambda}O$	0.30	3°	0.110	1.18	-14.3	_
	$\Lambda Ca \qquad \Lambda V$	$^{27}_{\Lambda}{ m Mg}$	0.36	36°	0.125	1.23	-16.2	_
	$\begin{array}{ccc} 0 & 20 \\ \text{Mass number } A & 40 & 60 \end{array}$	$^{28}_{\Lambda}{ m Si}$	0.32	53°	0.125	1.23	-16.6	-17.1 ± 0.2 [9
		$^{32}_{\Lambda}{ m S}$	0.28	0°	0.130	1.24	-17.6	-18.0 ± 0.5 [23
		$^{40}_{\Lambda}{ m K}$	0.01	_	0.136	1.26	-19.4	_
		$^{40}_{\Lambda} Ca$	0.03	_	0.136	1.26	-19.3	-19.24 ± 1.1 [2
		$^{41}_{\Lambda}$ Ca	0.13	12°	0.136	1.26	-19.5	_
		$^{48}_{\Lambda}{ m K}$	0.01	_	0.141	1.28	-20.2	_
		$^{51}_{\Lambda}V$	0.18	2°	0.151	1.31	-20.3	-20.51 ± 0.13
		$^{59}_{\Lambda}{ m Fe}$	0.26	23°	0.142	1.28	-21.7	-

HyperAMD w/ ESC08c + MPP + TBA successfully reproduces B_{Λ}

"Description of the core structure"

Ex. ${}^{9}_{\Lambda}Be$ "Full calc." vs. "Spherical calc."

Deformation of the ground states is essential to reproduce B_{Λ}

"Description of the core structure"

Deformations affect A dep. of ${\sf B}_\Lambda$ through $k_{\sf F}$ dep. of interaction and overlap between Λ and nucleons

Comparison with the results with ESC08c only

• Effects of many-body force

ESC: ESC08c only MPa: ESC08c + MPP + TBA

• Observed B_A is well reproduced with MPP + phenomenological TBA • Systematic data of B_A will provide a new insight to many-body force

Current status of observed B_{Λ}

Observations are not enough with A > 16

Systematic and accurate data of observed B_{Λ} are desired

Bertini *et al.*, NPA**83**,306(1979), Davis, Juric , *et al.*, NPB**52**(1973), Davis, NPA**547**,369(1992);NPA**754**,3c(2005), Ajimura *et. al.*, NPA**639**(1998)93c, Pile *et al.*, PRL**66**,2585(1991), Hotchi *et al.*, PRC**64**, 044302(2001), Hashimoto and Tamura, PPNP**57**,564(2006), Tang, *et. al.*, PRC**90**,034320(2014).

Summary

Summary

• HyperAMD + GCM was applied with ESC08c + MPP + TBA interaction

Observed \mathbf{B}_{Λ} are successfully reproduced in wide mass regions

• Structure of the core nuclei

- Spherical shape: deviate from observed ${\rm B}_{\Lambda}$
- Description of core deformation is essential

Density dependence of ΛN interaction

Many-body (MPP + TBA) force effects

- Input: experimental data of ${}^{89}{}_{\Lambda}$ Y
- MPP + TBA force could be determined by systematic data of B_{Λ}

Future plan

- To reveal reasons for deviation of B_{Λ} with A < 9 (e.g. ${}^{9}_{\Lambda}$ Be)
- Many-body force effects: from systematics of B_{Λ} , Λ in excited orbit?