Current research activities on heavy-ion physics in Korea: hot and rare

> Byungsik Hong (Korea University)

THE 31st ASRC International Workshop "International Workshop on Hadron Physics" JAEA, Tokai, Japan, January 18-20, 2016

Introduction to Korean HI Community

Subject	Accelerator	Experiment	Participating institutes (# of faculties)	
Hot QGP	LHC	ALICE	Inha (2), Pusan (1), Sejong (2), Yonsei (2)	
		CMS	Chonnam (1), Korea (1)	
	RHIC	PHENIX	Chonbuk (1), Ewha (1), Hanyang (1), Korea (1), Myongji (1), Seoul (1), Yonsei (2)	
		STAR	Pusan (1)	
Dense Matter	FAIR	CBM	Pusan (1)	
RIB (EoS, E _{sym})	RIBF	SAMURAI TPC	IBS (1), Korea (1)	
	RAON	LAMPS	Chonbuk (1), Chonnam (1), IBS (1), Inha (1), Korea (2)	

- Small community: ≤16 experimental faculties
- Similar number of theoretical faculties

Major Experimental Contributions*

Experiment	Contributions	Leading institutes
ALICE	ITS upgradeHeavy-flavor production	Inha, Pusan, Yonsei Inha
CMS	Forward RPC productionQuarkonium & HF productions in pA & AA	Korea Korea
PHENIX	 Forward RPC production MPC-Ex Si sensor production Quarkonium production in pp, pA & AA Single muon production in pp, pA & AA Spin structure of protons 	Korea Yonsei Korea Yonsei Seoul, Korea
SAMURAI TPC	 Tracking software development 	Korea
LAMPS	 TPC development Neutron wall development	IBS, Korea Korea

- Hardware: Si sensors, Gas detectors (RPC & TPC), Neutron detectors
- Analysis: Muons, Quarkonia, Heavy flavors
- * Disclaimer: The list is not complete and may be a biased view.

Nuclear Phase Diagram

<u>Two examples</u>: Quarkonium @ CMS and LAMPS @ RAON Hot Rare

I. Quarkonium Analysis in CMS

Quarkonium Production

1. pp

- Reference to understand pA and AA data
- Production mechanism not well understood
- Color Octet vs. Color Singlet
- Polarization for interaction of quarkonia with surroundings, not affected by initialstate effect

2. pA

- Nuclear modification of gluon PDF (nPDF): shadowing, saturation, CGC, etc.
- Medium-induced coherent gluon radiation
- Co-mover absorption

3. AA

- Color-charge screening effect: λ_D vs. r
- Sequential suppression: Different states dissociate at different temperatures
- Regeneration of q and \overline{q}
- Expected to be larger for J/ψ than for Υ

χ_c(1P)

Y"(35)

Ψ(2S)

A. Mocsy et al.,

014501 (2008)

PRD 77,

CMS Detector

Muons in CMS

- Excellent ID and triggering capabilities in the muon system
- Excellent momentum resolution in tracker (overall ~1-2%)
- Global muons = Standalone muons x Tracker information

Byungsik Hong

$\mu^{-}\mu^{+}$ Invariant Mass in 2011

J/ψ Analysis Method

Byungsik Hong

J/ψ in PbPb

- Yield is larger at lower p_T and midrapidity in central PbPb
- Consistent with regeneration scenario

- Compare to ALICE D mesons $R_{AA}(B) > R_{AA}(D) > R_{AA}(h^{\pm})$
- Consistent with mass ordering
 Dead cone effect?

v_2 of Prompt J/ψ in PbPb

CMS-PAS-HIN-12-001

- Finite v_2 for prompt J/ψ in the measured p_T range
- Low p_T (< 8 GeV/c): v_2 for prompt $J/\psi < v_2$ for h^{\pm} or prompt D
- High p_T (> 8 GeV/c): v_2 for prompt $J/\psi \approx v_2$ for h^{\pm}

$\psi(2S)$ in PbPb

For $3 < p_T < 30$ GeV/c in 1.6 < |y| < 2.4 $R_{\psi(2S)}$ in central (20%) PbPb is ~ 5 times larger than that in pp with larger systematic error.

For 6.5< p_T <30 GeV/c in |y| < 1.6 $R_{\psi(2S)}$ in central (20%) PbPb is ~2 times smaller than that in pp.

Indication of $\psi(2S)$ being less suppressed than J/ψ (<2 σ effect) at low p_T in the most central events: Need more J/ψ statistics from Run II.

$\Upsilon(nS)$ in PbPb

↑ Centrality integrated (0-100%) results: Υ states suppressed sequentially $R_{AA}[\Upsilon(1S)] = 0.425 \pm 0.029 \pm 0.070$ $R_{AA}[\Upsilon(2S)] = 0.116 \pm 0.028 \pm 0.022$ $R_{AA}[\Upsilon(3S)] < 0.14$ at 95% CL CMS-PAS-HIN-15-001

- ↗ Anisotropic hydrodynamic model for thermal suppression of bottomonia
 - 2 temperatures along y, 3 shear viscosities, no CNM, no regeneration, ...
- ↗ Transport model taking into account CNM and regeneration

$\Upsilon(nS)$ in PbPb

- $\leftarrow \Upsilon \text{ suppression does not strongly} \\ \text{depend on kinematics.}$
- Anisotropic hydro model cannot reproduce the forward data: CNM may help?

B production in pPb

CMS-PAS-HIN-14-004, arXiv:1508.06678, Submitted to PRL

- B analysis in pPb
 - No modification for B^{\pm} , B^{0} , B_{S}^{0} within uncertainties
 - Baseline for PbPb
- CMS capability to reconstruct B in PbPb
 - First fully reconstructed *B* in PbPb environment
 - Expect interesting physics results from RUN II PbPb with higher statistics

III. Detector Development for LAMPS @ RAON

RAON: New RIB Accelerator in Korea

LAMPS

EoS and Symmetry Energy

$$E(\rho, \delta)/A = E(\rho, \delta = 0) + E_{sym}(\rho)\delta^{2} + \mathcal{O}(\delta^{4}) + \cdots$$

with $\rho = \rho_{n} + \rho_{p}$ and $\delta = (\rho_{n} - \rho_{p})/(\rho_{n} + \rho_{p})$

• Useful expansion of $E_{sym}(\rho)$ around ρ_0

$$E_{sym}(\rho) = J + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2$$

$$L = \frac{3}{\rho_0} P_{sym} = 3\rho_0 \left. \frac{\partial E_{sym}(\rho)}{\partial \rho} \right|_{\rho = \rho_0} \qquad \text{(slope)}$$

$$K_{sym} = 9\rho_0^2 \left. \frac{\partial^2 E_{sym}(\rho)}{\partial \rho^2} \right|_{\rho = \rho_0} \qquad \text{(curvature)}$$

- Primary physics goal of LAMPS is
 - To explore the nuclear symmetry energy (*J*, *L*, *K*_{sym}) from sub-saturation to supra-saturation densities.

Time Projection Chamber

- Simulation of triple GEM by GARFIELD++
 - Gas mixture: Ar 90% + CH₄ 10%
 - Voltage for each foil ~400 V
 - <Gain> ~ 1.4X10⁶
 - <Drift velocity> \sim 50 mm/ μ s
 - <Dispersion> \lesssim 3 mm

Central Au+Au at 250 AMeV

TPC Simulation

Byungsik Hong

Design of Prototype TPC

Assembly of Prototype TPC

Inner Field Cage installed

Outer Field Cage installed

Prototype TPC assembled

Test of Triple GEM Readout

Byungsik Hong

Neutron Detector Array

- Construction of real-size prototype detectors (0.1X0.1X2.0 m³)
- Performance was tested using ⁶⁰Co and ²⁵²Cf sources
- Plan to have a beam test this year

LAMPS Neutron Array

Summary

- 1. Korean nuclear physics community is
 - Small, but active.
 - Participating in various experiments at LHC, RHIC, FAIR, RIBF, and RAON.
- 2. Examples
 - Heavy-ion physics at CMS
 - Major responsibility to the construction of forward RPC system
 - Quarkonium production in pA and AA collisions
 - RIB physics at LAMPS/RAON
 - Development of TPC: simulations, tracking software, construction and test of prototype
 - Development of neutron array: simulation, analysis software, construction and test of prototype
- 3. Final message
 - The Korean HI community is still in the developing stage. We expect a lot more to come.