



#### **Recent Studies on Heavy-quark Hadrons**

#### Hyun-Chul Kim

Department of Physics Inha University & RIKEN(理化学研究所)

The 31st Reimei WorkShop on Hadron Physics in Extreme Conditions at J-PARC, Jan.18, 2016

# Confinement & Heavy-quark potential

# Nonperturbative QCD



#### **QCD** Lagrangian

$$\mathcal{L} = \bar{\psi}(i\not\!\!D - m)\psi - \frac{1}{4}G^a_{\mu\nu}G^{\mu\nu\,a}$$

$$D_{\mu} = \partial_{\mu} - iA^a_{\mu}t^a, \ a = 1, \cdots 8$$

$$G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + f^{abc} A^b_\mu A^c_\nu$$

#### Gauge invariance

$$\psi \to S\psi$$
  
 $A_{\mu} \to SA_{\mu}S^{-1} + iS\partial_{\mu}S^{-1}$ 

# Nonperturbative QCD



#### **QCD** Lagrangian

$$\mathcal{L} = \bar{\psi}(i\not\!\!D - m)\psi - \frac{1}{4}G^a_{\mu\nu}G^{\mu\nu\,a}$$

This classical Lagrangian looks simple but has profound nonperturbative nature.

**1.Confinement** (Understood only qualitatively)

2. Chiral symmetry and its spontaneous breakdown

# A clue about Quark Confinement



#### Wilson's criteria of the quark confinement



# Central Q-Qbar potential



In the limit of infinitely heavy quark mass



G. S. Bali, K. Schilling, A. Wachter, hep-lat/9506017 (RCNP, Confinement 1995)



#### The ground state of bottomonia: $\eta_b(1S)$

 $m_{\eta_b} = 9394.2^{+4.8}_{-4.9}$ (stat)  $\pm 2.0$ (syst) MeV/ $c^2$ 

It was first found by the BABAR collaboration in 2009 and was confirmed by the CLEO collaboration.

BABAR, PRL 103 (2009) 161801, CLEO, PRD 81 (2010) 031104





# The ground state of bottomonia: $\eta_b(1S)$ $m_{\Upsilon}(1S) - m_{\eta_b} = 66.1^{+4.9}_{-4.8} \pm 2.0 \,\mathrm{MeV}/c^2$

It was first found by the BABAR collaboration in 2009 and was confirmed by the CLEO collaboration.

BABAR, PRL 103 (2009) 161801, CLEO, PRD 81 (2010) 031104

## Full Lattice prediction (including light-quark vacuum polarizations) $m_{\Upsilon}(1S) - m_{\eta_b} = 61 \pm 14 \,\mathrm{MeV}/c^2$ Consistent with experiments

Gray etal. PRD72 (2005) 094507

#### Certain nonperturbative effects should come into play! (They may be more important than confinement for low-lying charmonia.)

## **Motivation 2**



Many exotic heavy-light quark hadrons were newly found (XYZ mesons) and many new states will be measured.

We will present in this talk a recent preliminary result for the heavy quark potential from the instanton vacuum as a step toward constructing an effective action for heavy-light quark systems.

# Light-quark sector

# Instantons & SXSB

## **Effective Partition function**



#### QCD partition function

$$\begin{aligned} \mathcal{Z}_{\text{QCD}} &= \int DA_{\mu} D\psi D\psi^{\dagger} \exp\left[\sum_{f=1}^{N_{f}} \int d^{4}x \psi_{f}^{\dagger} (i \not\!\!D + i m_{f}) \psi_{f} - \frac{1}{4g^{2}} \int d^{4}x G^{2}\right] \\ &= \int DA_{\mu} \exp\left[-\frac{1}{4g^{2}} \int d^{4}x G^{2}\right] \operatorname{Det}(i \not\!\!D + i m_{f}) \end{aligned}$$

Integrating over gluons means averaging the partition function over (anti-)instantons

$$\implies \qquad \mathcal{Z}_{\text{eff}} = \text{Det}(i \not D + i m_f)$$

Instanton fields

$$A^{a}_{\mu} = 2\bar{\eta}^{a}_{\mu\nu}(x-z)_{\nu}\frac{\rho^{2}}{(x-z)^{2}[(x-z)^{2}+\rho^{2}]}$$



#### Zero-mode equation



Fourier transform of the zero mode will bring about the momentum dependent quark mass.

#### Momentum-dependent quark mass M(k)

$$F(k\rho) = 2t \left[ I_0(t)K_1(t) - I_1(t)K_0(t) - \frac{1}{t}I_1(t)K_1(t) \right] \Big|_{t=k\rho/2}$$

#### Momentum-dependent quark mass





#### **Spontaneous Chiral Symmetry Breaking**





Helicity of a light quark is flipped by hoping from instants to anti-instantons and vice versa. By doing that, the quark acquires the dynamical quark mass M(p).

$$\implies S(p) = \frac{i}{\not p + iM(p^2)}$$

Nonzero quark condensate:  $-i\langle\psi^{\dagger}\psi\rangle = 4N_c \int \frac{d^4p}{(2\pi)^4} \frac{M(p)}{p^2 + M^2(p)} = -(253 \,\mathrm{MeV})^3$ 

#### Eff. Chiral Action from the instanton vacuum



#### Effective QCD action from the instanton vacuum

$$\mathcal{Z} = \int D\psi D\psi^{\dagger} \exp\left(\int d^4x \sum_{f=1}^{N_f} \bar{\psi}_f i \partial \!\!\!/ \psi^f\right) \left(\frac{Y_{N_f}^+}{V M_1^{N_f}}\right)^{N_+} \left(\frac{Y_{N_f}^-}{V M_1^{N_f}}\right)^{N_-}$$

$$Y_{N_f}^+ = \int d\rho \, d(\rho) \int dU \prod_{f=1}^{N_f} \left\{ \int \frac{d^4 k_f}{(2\pi)^4} \left[ 2\pi \rho F(k_f \rho) \right] \int \frac{d^4 l_f}{(2\pi)^4} \left[ 2\pi \rho F(l_f \rho) \right] \right\}$$

$$\cdot (2\pi)^4 \delta(k_1 + \ldots + k_{N_f} - l_1 - \ldots - l_{N_f}) \cdot U^{\alpha_f}_{i'_f} U^{\dagger j'_f}_{\beta_f} \epsilon^{i_f i'_f} \epsilon_{j_f j'_f} \left[ i \psi^{\dagger}_{Lf\alpha_f i_f}(k_f) \psi^{f\beta_f j_f}_{L}(l_f) \right] \bigg\}.$$

#### $d(\rho)$ : instanton distribution, U: Color orientation

After integrating over zero modes and bosonizing, we get the effective chiral action:

$$S_{\rm eff} = -N_c \text{Tr} \log \left[ i \partial \!\!\!/ + i \sqrt{M(i\partial)} U^{\gamma_5} \sqrt{M(i\partial)} \right]$$

# Heavy-quark sector



# Instantons

Comments of the second

Decompose the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = q^{\dagger} (i \not\!\!D + im)q + Q^{\dagger} (i \not\!\!D + iM)Q - \frac{1}{4g^2}G^2$$

Foldy-Wouthuysen transformation (Heavy-quark expansion)

Wilson-loop as a heavy-quark propagator

$$W = \operatorname{Tr}\left[P \exp i \oint dx_{\mu} \sum_{I\bar{I}} A^{I}_{\mu}\right]$$





$$W(C) = \langle T | \left( \frac{d}{dt} - \sum_{I} a_{I} \right)^{-1} | 0 \rangle$$

$$a_I = iA_{I\mu}[x(t)]\dot{x}_{\mu}(t)$$

Average over instanton ensemble (average over all positions and orientations of instantons)

$$w = \left\langle \left\langle \left( \left( \theta^{-1} - \sum_{I} a_{I} \right)^{-1} \right) \right\rangle \right\rangle, \qquad \theta^{-1} = \frac{d}{dt}$$

$$w^{-1} = \theta^{-1} - \frac{N}{2VN_{c}} \operatorname{Tr}_{c} \left[ \int d^{4}z_{I} \theta^{-1} (w_{I} - \theta) \theta^{-1} + (I \to \overline{I}) \right] + \mathcal{O}((N/VN_{c})^{2})$$
D. Diakonov, V. Petrov, P. Pobylitsa, PLB **226**, 372 (1989)
$$w_{I} = (\theta^{-1} - a_{I})^{-1}$$

18

#### Corrections to the heavy quark mass



Taking a limit  $T \to \infty$ 

$$\operatorname{Tr} P \exp\left[i \int_0^T A_4 dx_4\right] \sim \exp[-\Delta M T]$$

$$\Delta M = -\frac{N}{2VN_c} \int dt \int dt' \int d^3 z_I \operatorname{Tr}_c \langle t | \theta^{-1} (w_I - \theta) \theta^{-1} | t' \rangle \Big|_{z_{I4} = 0} + (I \to \bar{I})$$
$$\Delta M = \frac{N}{2VN_c} \int d^3 z_I \operatorname{Tr}_c \left[ 1 - P \exp\left(i \int_{-\infty}^{\infty} dx_4 \overline{A_{I4}}\right) \Big|_{z_{I4} = 0} \right] + (I \to \bar{I})$$

Put here the instanton solution

#### $\Delta M \simeq 70 \, { m MeV}$ : Spin-independent

D. Diakonov, V. Petrov, P. Pobylitsa, PLB 226, 372 (1989)

#### Heavy-quark potential





$$V(R) = \frac{N}{2VN_c} \int d^3 z_I \operatorname{Tr}_c \left[ 1 - P \exp\left(i \int_{L_1} dx_4 A_{I4}\right) P \exp\left(-i \int_{L_2} dx_4 A_{I4}\right) \right] + (I \to \bar{I})$$

 $V(0) = 0, V(\infty) = 2\Delta M$ 

D. Diakonov, V. Petrov, P. Pobylitsa, PLB 226, 372 (1989)

#### Instanton effects on heavy quark potential







Decompose the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \bar{q}(i\not\!\!D - m)q + \left[\bar{\Psi}(i\not\!\!D - M_Q)\Psi\right] - \frac{1}{4g^2}G^2$$

Foldy-Wouthuysen transformation (Heavy-quark mass expansion)

$$\mathcal{L}_{\mathrm{HQET}} = \bar{Q}_{v}(x) \left( iv \cdot D - i \not \!\!\!D_{\perp} \frac{1}{2M_{Q} + iv \cdot D} i \not \!\!\!D_{\perp} \right) Q_{v}(x)$$

Inverse of the heavy quark propagator



$$\left(iv \cdot D - i \not\!\!D_{\perp} \frac{1}{2M_Q + iv \cdot D} i \not\!\!D_{\perp}\right) S(x, y, A) = \delta^4(x - y)$$

Leading heavy-quark propagator

$$(iv \cdot D)S_0(x, y, A) = \delta^4(x - y)$$
  $v_\mu = (1, 0)$ 

$$S_0(x, y, A) = i\theta(x_0 - y_0)P \exp\left(i\int_{y_0}^{x_0} dz_4 A_4\right)\delta^3(\mathbf{x} - \mathbf{y})$$

Effective full propagator as an integral equation

$$S(x,y,A) = S_0(x,y,A) - \int d^4 z S_0(x,z,A) \left[ i \not D_\perp \frac{1}{2M_Q + iv \cdot D} i \not D_\perp \right] S(z,y,A)$$



Wilson-loop as a heavy-quark propagator



$$W = \operatorname{Tr}\left[S\left(x_2, y_2, -i\frac{\delta}{\delta J}\right) P(y_1, y_2)\overline{\Gamma}S\left(y_1, x_1, -i\frac{\delta}{\delta J}\right) P(x_2, x_1)\Gamma\right] Z[J]|_{J=0}$$
$$P(x, y) = P \exp\left(i\int_x^y \mathrm{d}z^\mu A_\mu\right)$$
$$\mathcal{Z}[J] = \int DA_\mu \exp i \int d^4x \left[-\frac{1}{4}(G^a_{\mu\nu})^2 + J^\mu_a A^a_\mu\right]$$

E. Eichten and F. Feinberg, PRD 23, 2724 (1981). 24

#### Heavy-quark potential



As  $m_Q \to \infty$ 

 $W = \operatorname{Tr}[\Gamma \overline{\Gamma} w] \delta(\mathbf{x}_1 - \mathbf{y}_1) \delta(\mathbf{x}_2 - \mathbf{y}_2)$ 

$$w = \langle 1 \rangle - \frac{1}{4m_Q^2} \int_{-T/2}^{T/2} dz \, \epsilon^{ijk} \sigma_1^k \langle E^i(z, \mathbf{x}_1) D^j(z, \mathbf{x}_1) \rangle + (1 \longrightarrow 2) \\ - \frac{1}{4m_Q^2} \int_{-T/2}^{T/2} dz \int_{-T/2}^{T/2} dz' \sigma_1^i \langle B^i(z, \mathbf{x}_1) \mathbf{D}^2(z', \mathbf{x}_1) \rangle + (1 \longrightarrow 2) \\ - \frac{1}{4m_Q^2} \int_{-T/2}^{T/2} dz \int_{-T/2}^{T/2} dz' \left[ \sigma_1^i \langle B^i(z, \mathbf{x}_1) \mathbf{D}^2(z', \mathbf{x}_2) \rangle \right. \\ + \left. \sigma_2^i \langle \mathbf{D}^2(z, \mathbf{x}_1) B^i(z', \mathbf{x}_2) \rangle + \left. \sigma_1^i \sigma_2^j \langle B^i(z, \mathbf{x}_1) B^j(z', \mathbf{x}_2) \rangle \right]$$

$$\langle \mathcal{O} \rangle = \int DA_{\mu} \mathrm{Tr}_{c} P \left[ \mathcal{O} \exp \left( i \oint_{C} \mathrm{d} z_{\mu} A_{\mu}(z) \right) \right] e^{i S_{YM}}$$

#### Heavy-quark potential with $1/M_Q^2$



$$\begin{split} V_{SD}(r) &= \left(\frac{\sigma_1 \cdot \mathbf{L}_1}{4m_Q^2} - \frac{\sigma_2 \cdot \mathbf{L}_2}{4m_{\bar{Q}}^2}\right) \left(\frac{1}{r} \frac{dV(r)}{dr} + \frac{2}{r} \frac{dV_1(r)}{dr}\right) \\ &+ \left(\frac{\sigma_1 \cdot \mathbf{L}_1}{2m_Q m_{\bar{Q}}} - \frac{\sigma_2 \cdot \mathbf{L}_2}{2m_Q m_{\bar{Q}}}\right) \frac{1}{r} \frac{dV_2(r)}{dr} \\ &+ \frac{1}{6m_Q m_{\bar{Q}}} \sigma_1 \cdot \sigma_2 \nabla^2 V_2(r) \\ &+ \frac{1}{12m_Q m_{\bar{Q}}} (3\sigma_1 \cdot \mathbf{n} \, \sigma_2 \cdot \mathbf{n} - \sigma_1 \cdot \sigma_2) V_3(r) \end{split}$$

$$V_{1}(r) = -\frac{1}{2} V(r), \qquad V(r) = \frac{4\pi}{N_{c}} \frac{1}{R^{4}} \int_{0}^{\infty} dz z^{2} \int_{-1}^{1} dt \left\{ 1 - \cos\left(\pi \sqrt{\frac{z^{2} + r^{2}/4 + zrt}{z^{2} + r^{2}/4 + zrt + \rho^{2}}}\right) \cos\left(\pi \sqrt{\frac{z^{2} + r^{2}/4 - zrt}{z^{2} + r^{2}/4 - zrt + \rho^{2}}}\right) V_{2}(r) = \frac{1}{2} V(r), \qquad -\frac{z^{2} - r^{2}/4}{\sqrt{(z^{2} + r^{2}/4)^{2} - (zrt)^{2}}} \sin\left(\pi \sqrt{\frac{z^{2} + r^{2}/4 + zrt}{z^{2} + r^{2}/4 + zrt + \rho^{2}}}\right) \sin\left(\pi \sqrt{\frac{z^{2} + r^{2}/4 - zrt}{z^{2} + r^{2}/4 - zrt + \rho^{2}}}\right) V_{3}(r) = \left(\frac{1}{r} \frac{d}{dr} - \frac{d^{2}}{dr^{2}}\right) V(r)$$

#### Heavy-quark potential with $1/M_Q^2$



$$V_{Q\bar{Q}}(r) = V(r) + V_{SS}(r)(\mathbf{S}_Q \cdot \mathbf{S}_{\bar{Q}}) + V_{LS}(r)(\mathbf{L} \cdot \mathbf{S}) + V_T(r) \left[ 3(\mathbf{S}_Q \cdot \mathbf{n})(\mathbf{S}_{\bar{Q}} \cdot \mathbf{n}) - \mathbf{S}_Q \cdot \mathbf{S}_{\bar{Q}} \right].$$

$$\begin{array}{ll} \text{Spin-Spin Interaction} & V_{SS}(r) = \frac{1}{3m_Q^2} \nabla^2 V(r), \\ \\ \text{Spin-Orbit Interaction} & V_{LS}(r) = \frac{1}{2m_Q^2 r} \frac{dV(r)}{dr}, \\ \\ \\ \\ \text{Tensor Interaction} & V_T(r) = \frac{1}{3m_Q^2} \left( \frac{1}{r} \frac{dV(r)}{dr} - \frac{d^2 V(r)}{dr^2} \right). \end{array}$$

B. Turimov, HChK,U. Yakhshiev, M.M. Musakhanov, E. Hiyama, in preparation

#### Instanton effects on heavy quark potential





#### Instanton effects on heavy quark potential



We first estimate the instanton effects on charmonium and bottomonium mass splittings with some approximations considered.

With large r

$$V(r) = 2M_Q - \frac{\pi^3}{N_c} \left(\frac{\rho}{R}\right)^4 \frac{1}{r}$$

With small r

$$V(r) = \frac{\rho\eta}{R^4} r^2 - \frac{\xi}{\rho R^4} r^4$$

$$V_{SS}(r) = \frac{1}{m_Q^2} \left[ \frac{2\rho\eta}{R^4} - \frac{20\xi}{3\rho R^4} r^2 \right] \qquad \eta \simeq 5.6, \quad \xi \simeq 2.1$$

$$V_{LS}(r) = \frac{1}{m_Q^2} \left[ \frac{\rho\eta}{R^4} - \frac{2\zeta}{\rho R^4} r^2 \right]$$

$$V_T(r) = \frac{8\zeta}{3m_Q^2 \rho R^4} r^2$$



These are the estimates. The results from the full calculation are to come!

|                                  | This work [Me     | eV] Ex      | periment [MeV][1   | 2]                  |  |  |  |
|----------------------------------|-------------------|-------------|--------------------|---------------------|--|--|--|
|                                  | Charmonium states |             |                    |                     |  |  |  |
| $\Delta M_{J/\psi-\eta_c}$       | 18.48             |             | $113.32 \pm 0.689$ |                     |  |  |  |
| $\Delta M_{\chi_{c2}-\chi_{c1}}$ | 18.48             |             | $45.54\pm0.02$     | p = 0.00 IIII       |  |  |  |
| $\Delta M_{\chi_{c2}-\chi_{c0}}$ | 27.72             | small but   | $141.45 \pm 0.22$  | $R = 1 \mathrm{fm}$ |  |  |  |
| $\Delta M_{\chi_{c1}-\chi_{c0}}$ | 9.24              | non negligi | ble $95.91\pm0.24$ |                     |  |  |  |
| $\Delta M_{\chi_{c2}-h_c}$       | 27.72             |             | $30.82\pm0.02$     |                     |  |  |  |
| $\Delta M_{\chi_{c1}-h_c}$       | 9.24              | )           | $-14.72 \pm 0.04$  |                     |  |  |  |
| Bottomonium states               |                   |             |                    |                     |  |  |  |
| $\Delta M_{\Upsilon - \eta_b}$   | 1.70              |             | $62.30 \pm 2.94$   |                     |  |  |  |
| $\Delta M_{\chi_{b2}-\chi_{b1}}$ | 1.70              |             | 19.43              |                     |  |  |  |
| $\Delta M_{\chi_{b2}-\chi_{b0}}$ | 2.55              |             | $52.77\pm0.16$     |                     |  |  |  |
| $\Delta M_{\chi_{b1}-\chi_{b0}}$ | 0.85              | Tiny effect | s $33.34 \pm 0.16$ |                     |  |  |  |
| $\Delta M_{\chi_{b2}-h_b}$       | 2.55              |             | $12.91\pm0.43$     |                     |  |  |  |
| $\Delta M_{\chi_{b1}-h_b}$       | 0.85              | )<br>       | $-6.52 \pm 0.43$   |                     |  |  |  |

Outlook



## Things to do

- Compute the mass splittings of the low-lying quarkonia, using the potential together with instanton effects.
- Compute the light-quark corrections to the heavy-quark potential and to the quarkonia mass.
- Construct the effective partition function for heavy-lightquark systems.

# Charm & Bottom baryons

## **Motivation 1**



# The masses of bottom baryons:

$$\begin{split} M_{\Sigma_b^+} &= 5811.3^{+0.9}_{-0.8} \pm 1.7 \,\mathrm{MeV} \qquad M_{\Sigma_b^-} = 5815.5^{+0.6}_{-0.5} \pm 1.7 \,\mathrm{MeV} \\ M_{\Sigma_b^{*+}} &= 5832.1 \pm 0.7^{+1.7}_{-1.8} \,\mathrm{MeV} \qquad M_{\Sigma_b^{*-}} = 5835.1 \pm 0.7^{+1.7}_{-1.8} \,\mathrm{MeV} \\ \mathrm{CDF}, \mathrm{PRD85}, 092011 \,(2012) \end{split}$$

 $M_{\Xi_{b}} = 5948.9 \pm 0.8 \pm 1.2 \,\mathrm{MeV}$  CMS, PRL 108, 252002 (2012)

$$\begin{split} M_{\Xi_b^{\prime}} &= 5935.02 \pm 0.02 \pm 0.05 \, \mathrm{MeV} \\ M_{\Xi_b^*} &= 5955.33 \pm 0.12 \pm 0.05 \, \mathrm{MeV} \end{split} \label{eq:main_eq} \text{LHCb, PRL 114 062004 (2015)} \end{split}$$

The masses of the low-lying bottom baryons are now much known with the help of LHC.



The nucleon can be considered as a chiral soliton in the large Nc limit.

The model was successful in describing the structure of the nucleon.
Will this mean-field approach (large Nc limit) work also for excited as well as heavy baryons?



# Chiral Quark-Soliton Approach (Quarks in the pion mean fields)



$$S_{\text{eff}} = -N_c \text{Tr} \ln(i\partial \!\!\!/ + iMU^{\gamma_5} + i\hat{m})$$

#### Nucleon consisting of Nc quarks

 $\Pi_N = \langle 0 | J_N(0, T/2) J_N^{\dagger}(0, -T/2) | 0 \rangle$ 

$$J_N(\vec{x},t) = \frac{1}{N_c!} \varepsilon^{\beta_1 \cdots \beta_{N_c}} \Gamma_{JJ_3Y'TT_3Y}^{\{f\}} \psi_{\beta_1 f_1}(\vec{x},t) \cdots \psi_{\beta_{N_c} f_{N_c}}(\vec{x},t)$$
$$\lim_{T \to \infty} \Pi_N(T) \simeq e^{-M_N T}$$

$$\Pi_N(\vec{x},t) = \Gamma_N^{\{f\}} \Gamma_N^{\{g\}*} \frac{1}{Z} \int dU \prod_{i=1}^{N_c} \left\langle 0, T/2 \left| \frac{1}{D(U)} \right| 0, -T/2 \right\rangle_{f,g} e^{-S_{\text{eff}}}$$

$$\lim_{T\to\infty}\frac{1}{Z}\prod_{i=1}^{N_c}\left\langle 0,T/2\left|\frac{1}{D(U)}\right|0,-T/2\right\rangle \sim e^{-(N_c E_{\text{val}}(U)+E_{\text{sea}}(U))T}$$
37



#### **Classical solitons**

 $\langle J_N(\vec{x},T) J_N^{\dagger}(\vec{y},-T) \rangle_0 \sim \Pi_N(T) \sim e^{-[(N_c E_{\rm val} + E_{\rm sea})T]}$ 





 $\frac{\delta}{\delta U}(N_c E_{\text{val}} + E_{\text{sea}}) = 0 \implies M_{\text{cl}} = N_c E_{\text{val}}(U_c) + E_{\text{sea}}(U_c)$ 

Hedgehog Ansatz:

$$U_{\mathrm{SU}(2)} = \exp\left[i\gamma_5\mathbf{n}\cdot\boldsymbol{\tau}\boldsymbol{P}(\boldsymbol{r})\right]$$



hedgehog





Spontaneous chiral symmetry breaking













system is stabilized.





The valence quarks produce the mean field in the large Nc limit!



- Effective and relativistic low energy theory
- Large N<sub>c</sub> limit : meson mean field  $\rightarrow$  soliton
- Quantizing SU(3) rotated-meson fields → Collective Hamiltonian, model baryon states

hedgehog



 $U_{\mathrm{SU}(2)} = \exp\left[i\gamma_5\mathbf{n}\cdot\boldsymbol{\tau}P(r)\right]$ Hedgehog Ansatz:

**Collective quantization** 

$$U_0 = \left[ \begin{array}{cc} e^{i\vec{n}\cdot\vec{\tau}\,P(r)} & 0\\ 0 & 1 \end{array} \right]$$

SU(2) E. Witten's imbedding into SU(3): SU(2) X U(1)



**Collective Hamiltonian for flavor symmetry breakings**  $H_{\text{Hadronic}} = H_{\text{cl}} + H_{\text{rot}} + H_{\text{sb}}$ 

$$\begin{split} H_{\rm rot} &= \frac{1}{2I_1} \sum_{i=1}^3 J_i^2 + \frac{1}{2I_2} \sum_{p=1}^3 J_p^2 \\ H_{\rm sb} &= (m_s - \hat{m}) \left( \alpha D_{88}^{(8)}(\mathcal{R}) + \beta \hat{Y} + \frac{1}{\sqrt{3}} \gamma \sum_{i=1}^3 D_{8i}^{(8)}(\mathcal{R}) \hat{J}_i \right) \\ &+ (m_d - m_u) \left( \frac{\sqrt{3}}{2} \alpha D_{38}^{(8)}(\mathcal{R}) + \beta \hat{T}_3 + \frac{1}{2} \gamma \sum_{i=1}^3 D_{3i}^{(8)}(\mathcal{R}) \hat{J}_i \right) \\ &+ (m_u + m_d + m_s) \sigma \\ \alpha &= - \left( \frac{2}{3} \frac{\Sigma_{\pi N}}{m_u + m_d} - \frac{K_2}{I_2} \right), \quad \beta = -\frac{K_2}{I_2}, \quad \gamma = 2 \left( \frac{K_1}{I_1} - \frac{K_2}{I_2} \right) \\ \sigma &= -(\alpha + \beta) = \frac{2}{3} \frac{\Sigma_{\pi N}}{m_u + m_d}, \quad \text{Details will be explained by Gh.S. Yang on Wednesday.} \end{split}$$

45



#### **Collective Hamiltonian for flavor symmetry breakings**



SU(3) flavor symmetry breaking + Isospin symmetry breaking





| Mass         | [MeV]        | $T_3$ | Y  | Exp Input               | Numerical results  |
|--------------|--------------|-------|----|-------------------------|--------------------|
| Ma           | p            | 1/2   | 1  | $938.27203 \pm 0.00008$ | $938.76 \pm 3.65$  |
| $M_N$        | n            | -1/2  | T  | $939.56536 \pm 0.00008$ | $940.27\pm3.64$    |
| $M_A$        | $\Lambda$    | 0     | 0  | $1115.683 \pm 0.006$    | $1109.61 \pm 0.70$ |
|              | $\Sigma^+$   | 1     |    | $1189.37 \pm 0.07$      | $1188.75 \pm 0.70$ |
| $M_{\Sigma}$ | $\Sigma^0$   | 0     | 0  | $1192.642 \pm 0.024$    | $1190.20 \pm 0.77$ |
|              | $\Sigma^{-}$ | -1    |    | $1197.449 \pm 0.030$    | $1195.48 \pm 0.71$ |
| <i>M</i> -   | $\Xi^0$      | 1/2   | 1  | $1314.83 \pm 0.20$      | $1319.30 \pm 3.43$ |
| ME           | $\Xi^{-}$    | -1/2  | -1 | $1321.31 \pm 0.13$      | $1324.52 \pm 3.44$ |

$$R = \frac{m_s - \hat{m}}{m_d - m_u} \\ = \frac{M_p - M_{\Sigma^+} + M_{\Sigma^0} - M_{\Xi^-}}{2(M_{\Sigma^+} - M_{\Sigma^0})},$$

 $R = 58.1 \pm 1.3$ .

 $\begin{array}{ll} \left(m_d-m_u\right)\alpha = -4.390\pm 0.004, & \left(m_s-\hat{m}\right)\alpha = -255.029\pm 5.821, \\ \left(m_d-m_u\right)\beta = -2.411\pm 0.001, & \left(m_s-\hat{m}\right)\beta = -140.040\pm 3.195, \\ \left(m_d-m_u\right)\gamma = -1.740\pm 0.006, & \left(m_s-\hat{m}\right)\gamma = -101.081\pm 2.332, \end{array}$ 



Employing the value of the ratio  $(m_d - m_u) / (m_d + m_u) = 0.28 \pm 0.03$ ,

$$\Sigma_{\pi N} = (36.4 \pm 3.9) \,\mathrm{MeV}.$$

#### Numerical results of Decuplet mass

| Mass                     | [MeV]         | $T_3$ | Y  | Experiment <sup>41)</sup> | Predictions        |
|--------------------------|---------------|-------|----|---------------------------|--------------------|
| $M_{\Delta}$             | $\Delta^{++}$ | 3/2   | 1  | 1231 - 1233               | $1248.54 \pm 3.39$ |
|                          | $\Delta^+$    | 1/2   |    |                           | $1249.36 \pm 3.37$ |
|                          | $\Delta^0$    | -1/2  |    |                           | $1251.53 \pm 3.38$ |
|                          | $\Delta^{-}$  | -3/2  |    |                           | $1255.08 \pm 3.37$ |
|                          | $\Sigma^{*+}$ | 1     |    | $1382.8\pm0.4$            | $1388.48\pm0.34$   |
| $M_{\Sigma^*}$           | $\Sigma^{*0}$ | 0     | 0  | $1383.7\pm1.0$            | $1390.66 \pm 0.37$ |
|                          | $\Sigma^{*-}$ | -1    |    | $1387.2\pm0.5$            | $1394.20 \pm 0.34$ |
| M                        | $\Xi^{*0}$    | 1/2   | 1  | $1531.80 \pm 0.32$        | $1529.78 \pm 3.38$ |
| $M \equiv *0$            | $\Xi^{*-}$    | -1/2  | -1 | $1535.0 \pm 0.6$          | $1533.33 \pm 3.37$ |
| $M^{\star}_{\Omega^{-}}$ | $\Omega^{-}$  | 0     | -2 | $1672.45 \pm 0.29$        | Input              |

G.S. Yang & HChK, Prog. Theor. Phys. 128,397(2012); Prog. Theor. Exp. Phys. 2013, 013D01 48



#### Physical mass differences of baryon decuplet

| $(\Delta M_{B_{10}})$                 | This work      | Experimental data               |
|---------------------------------------|----------------|---------------------------------|
| $(M_{\Delta^{++}} - M_{\Delta^{+}})$  | $-0.59\pm0.47$ |                                 |
| $(M_{\Delta^+} - M_{\Delta^0})$       | $-1.95\pm0.13$ |                                 |
| $(M_{\Delta^0} - M_{\Delta^-})$       | $-3.32\pm0.32$ |                                 |
| $(M_{\Sigma^{*+}} - M_{\Sigma^{*0}})$ | $-1.95\pm0.13$ |                                 |
| $(M_{\Sigma^{*0}} - M_{\Sigma^{*-}})$ | $-3.32\pm0.32$ | $-3.1\pm0.6$ [ D.W.Thomas et a  |
| $(M_{\Xi^{*0}} - M_{\Xi^{*-}})$       | $-3.32\pm0.32$ | $-2.9\pm0.9$ [ PDG, 2010 ]      |
| $(M_{\Delta^{++}} - M_{\Delta^0})$    | $-2.54\pm0.57$ | $-2.86\pm0.30$ [ GW, 2006 ]     |
| $(M_{\Delta^+} - M_{\Delta^-})$       | $-5.28\pm0.30$ |                                 |
| $(M_{\Delta^{++}} - M_{\Delta^{-}})$  | $-5.86\pm0.38$ | $-5.9\pm3.1$ [ Gatchina, 1981 ] |
| $(M_{\Sigma^{*+}} - M_{\Sigma^{*-}})$ | $-5.28\pm0.30$ |                                 |

$$(M_{\Sigma^{*0}} - M_{\Sigma^{*-}}) = (M_{\Xi^{*0}} - M_{\Xi^{*-}})$$

# Charmed baryons in the mean fields

## **Charmed baryons**



- Valence quarks are bound by the pion mean field.
- Light quarks govern a heavy-light quark system.
- Heavy quarks can be considered as merely static color sources.



Meson mean field by Nc-1 valence quarks

Suggested by the late D. Diakonov

## **Charmed baryons**



#### Weight diagram for charmed baryons without heavy quark c



## **Modification of the Hamiltonian**





Moments of Inertia and Sigma pi-N term: sum over valence quark states:

$$I_{1,2}, K_{1,2}, \Sigma_{\pi N} \longrightarrow \left(\frac{N_c - 1}{N_c}\right) I_{1,2}, \left(\frac{N_c - 1}{N_c}\right) K_{1,2}, \left(\frac{N_c - 1}{N_c}\right) \Sigma_{\pi N},$$
  
Collective Hamiltonian for flavor symmetry breakings

 $H_{\rm sb}^{m_{\rm s}} = \left(\frac{N_c - 1}{N_c}\right) \alpha \, D_{88}^{(8)}(\mathcal{R}) \, + \, \beta \, \hat{Y} \, + \, \frac{1}{\sqrt{3}} \, \gamma \sum_{i=1}^3 D_{8i}^{(8)}(\mathcal{R}) \, \hat{J}_i$ 

## **Heavy baryons**







### Heavy baryon Mass Formulae



$$M_{B-Q}^{\overline{\mathbf{3}}} = \mathcal{M}_{\text{soliton}} + \frac{3}{4I_2} + \delta_{\overline{3}}Y$$
$$M_{B-Q}^{\mathbf{6}} = \mathcal{M}_{\text{soliton}} + \frac{3}{4I_2} + \frac{3}{2I_1} + \delta_6Y$$

$$\delta_{\overline{3}} = \frac{1}{4}\alpha + \beta = (-203.80 \pm 3.51) \text{ MeV},$$
  
$$\delta_{\overline{6}} = \frac{1}{10}\alpha + \beta - \frac{3}{10}\gamma = (-135.22 \pm 3.32) \text{ MeV}$$

 $\alpha, \beta, \gamma$  are determined from the baryon octet mass!!

G.S. Yang, HChK, M. Polyakov, M. Praszalowicz, in preparation

## Heavy baryon Mass splitting



| Rep.                                                 | $\Delta M$                    | This work          | Exp. [MeV]         |
|------------------------------------------------------|-------------------------------|--------------------|--------------------|
| $[\overline{2} \ I - 1]$                             | $\Lambda_c - \Xi_c$           | $202.80 \pm 2.51$  | $-182.88\pm0.38$   |
| $\begin{bmatrix} 0, \ 0 = \frac{1}{2} \end{bmatrix}$ | $\Lambda_b - \Xi_b$           | $-205.00 \pm 5.01$ | $-174.50 \pm 1.39$ |
| $\begin{bmatrix} 6, \ J = \frac{1}{2} \end{bmatrix}$ | $\Sigma_c - \Xi_c'$           | $-135.99 \pm 3.39$ | $-123.21 \pm 2.13$ |
|                                                      | $\Sigma_b - \Xi_b^{\prime -}$ | $-100.22 \pm 0.02$ | $-121.62\pm1.31$   |
|                                                      | $\Xi_c'-\Omega_c$             | $-135.22\pm3.32$   | $-118.45 \pm 2.72$ |
|                                                      | $\Xi_b^{\prime -} - \Omega_b$ |                    | $-113.78\pm3.20$   |
| $\left[6, \ J = \frac{3}{2}\right]$                  | $\Sigma_c^* - \Xi_c^*$        | 125 00 1 2 20      | $-127.83 \pm 0.89$ |
|                                                      | $\Sigma_b^* - \Xi_b^{*-}$     | $-130.22 \pm 0.02$ | $-121.73\pm1.34$   |
|                                                      | $\Xi_c^* - \Omega_c^*$        | $-135.99 \pm 3.39$ | $-120.0\pm2.03$    |
|                                                      | $\Xi_b^* - \Omega_b^*$        | $-135.22 \pm 3.32$ | •                  |

G.S. Yang, HChK, M. Polyakov, M. Praszalowicz, in preparation

## **Chrmomagnetic splitting**



#### Splitting between spin 1/2 and 3/2 in the Baryon Sextet



G.S. Yang, HChK, M. Polyakov, M. Praszalowicz, in preparation

#### Results



# **Preliminary Results**

| $\mathcal{R}_Q^J$                      | B            | Mass Prediction [MeV] | Theor Exp.[MeV]: $\%$                 | Exp. [MeV]         |
|----------------------------------------|--------------|-----------------------|---------------------------------------|--------------------|
| $\overline{\mathbf{g}}J = \frac{1}{2}$ | $\Lambda_c$  | Input                 |                                       | $2283.46\pm0.14$   |
| o <sub>c</sub> -                       | $\Xi_c$      | $2490.23\pm1.29$      | $21.33 \pm 2.17 ~:~ (0.86)\%$         | $2469.34\pm0.35$   |
| × 1                                    | $\Sigma_c$   | $2424.76\pm2.26$      | $-28.78 \pm 2.22 \ : \ - (1.17)\%$    | $2453.54 \pm 0.15$ |
| $6_{\mathrm{c}}^{J=\frac{1}{2}}$       | $\Xi_c'$     | $2559.98\pm1.13$      | $-16.77 \pm 2.39 ~:~ -(0.65)\%$       | $2576.75 \pm 2.12$ |
|                                        | $\Omega_c$   | Input                 |                                       | $2695.2\pm1.7$     |
| - 3                                    | $\Sigma_c^*$ | $2495.46\pm2.26$      | $-22.60\pm2.36~:~-(0.90)\%$           | $2518.07 \pm 0.82$ |
| $6_{c}^{J=\frac{5}{2}}$                | $\Xi_c^*$    | $2630.68\pm1.13$      | $-15.22 \pm 1.17 \; : \; -(0.58)  \%$ | $2645.9\pm0.35$    |
|                                        | $\Omega_c^*$ | Input                 |                                       | $2765.9\pm2.0$     |
|                                        |              |                       |                                       |                    |

G.S. Yang, HChK, M. Polyakov, M. Praszalowicz, in preparation

# Summary



- Assuming that the valence quarks are bound by the pion mean fields, we can regard the nucleon as a chiral soliton.
- Formulating the most general expressions of the collective Hamiltonian and determining all dynamical parameters by using the experimental data unequivocally, we are able to find the the collective baryon wavefunctions.
- Then we predicted the mass splittings of the baryon decuplet.
- We also presented preliminary results of the masses for the charmed and bottom baryons (light quarks govern their structure!).

## Outlook



- Coupling constants & Form factors of Heavy baryons
- Decays of heavy Baryons (strong, radiative, semileptonic, nonleptonic,.....)
- strange quark mass dependence of charmed & bottom baryon properties.
- Heavy Pentaquarks (In fact, Pc belongs to the baryon octet according to the light quarks). In this case, the mean-field approach in the large Nc limit seems even more plausible!
- Doubly charmed & bottom baryons

## Thanks to My collaborators

- B. Turimov (Inha Univ.)
- U. Yakhshiev (Inha Univ.)
- E. Hiyama (RIKEN)
- M.M. Musakhanov (Uzbekistan Nat'l Univ.)
- Gh.-S. Yang (Soong-Sil Univ.)
- M.V. Polyakov (Ruhr-Uni Bochum)
- M. Praszalowicz (Jagiellonian Univ.)



Though this be madness, yet there is method in it.

Hamlet Act 2, Scene 2

Thank you very much!



#### Model baryon state

$$|B\rangle = \sqrt{\dim(\mathcal{R})} (-1)^{J_3 + Y'/2} D_{(Y,T,T_3)(-Y',J,-J_3)}^{(\mathcal{R})*}$$

Constraint for the collective quantization :

$$Y' = -\frac{N_c B}{3}$$

#### Mixings of baryon states

$$\begin{aligned} |B_8\rangle &= \left|8_{1/2}, B\right\rangle + c_{\overline{10}}^B \left|\overline{10}_{1/2}, B\right\rangle + c_{\overline{27}}^B \left|27_{1/2}, B\right\rangle, \\ |B_{10}\rangle &= \left|10_{3/2}, B\right\rangle + a_{\overline{27}}^B \left|27_{3/2}, B\right\rangle + a_{\overline{35}}^B \left|35_{3/2}, B\right\rangle, \\ |B_{\overline{10}}\rangle &= \left|\overline{10}_{1/2}, B\right\rangle + d_8^B \left|8_{1/2}, B\right\rangle + d_{\overline{27}}^B \left|27_{1/2}, B\right\rangle + d_{\overline{35}}^B \left|\overline{35}_{1/2}, B\right\rangle. \end{aligned}$$

$$|B,S\rangle = |R,B,S\rangle - \sum_{R' \neq R} |R',B,S\rangle \, \frac{\langle R',B,S| \, H' \, |R,B,S\rangle}{M^{(0)}(R') - M^{(0)}(R)}.$$



#### **Mixing coefficients**

$$\begin{split} c^B_{\overline{10}} &= c_{\overline{10}} \begin{bmatrix} \sqrt{5} \\ 0 \\ \sqrt{5} \\ 0 \end{bmatrix}, \ c^B_{27} = c_{27} \begin{bmatrix} \sqrt{6} \\ 3 \\ 2 \\ \sqrt{6} \end{bmatrix}, \ a^B_{27} = a_{27} \begin{bmatrix} \sqrt{15/2} \\ 2 \\ \sqrt{3/2} \\ 0 \end{bmatrix}, \ a^B_{35} = a_{35} \begin{bmatrix} 5/\sqrt{14} \\ 2\sqrt{5/7} \\ 3\sqrt{5/14} \\ 2\sqrt{5/7} \end{bmatrix}, \\ d^B_8 &= d_8 \begin{bmatrix} 0 \\ \sqrt{5} \\ \sqrt{5} \\ 0 \end{bmatrix}, \ d^B_{27} = d_{27} \begin{bmatrix} 0 \\ \sqrt{3/10} \\ 2/\sqrt{5} \\ \sqrt{3/2} \end{bmatrix}, \ d^B_{\overline{35}} = d_{\overline{35}} \begin{bmatrix} 1/\sqrt{7} \\ 3/(2\sqrt{14}) \\ 1/\sqrt{7} \\ \sqrt{5/56} \end{bmatrix} \end{split}$$

respectively in the basis  $[N, \Lambda, \Sigma, \Xi], [\Delta, \Sigma^*, \Xi^*, \Omega], [\Theta^+, N_{\overline{10}}, \Sigma_{\overline{10}}, \Xi_{\overline{10}}]$ 

EM mass corrections



Electromagnetic (*EM*) self-energy

| EM [MeV]                                     | Exp.                |
|----------------------------------------------|---------------------|
| ( <i>p</i> − <i>n</i> ) <sub><i>⊑M</i></sub> | <b>0.76±</b> 0.30   |
| <b>(Σ+ _ Σ<sup>-</sup>)</b>                  | -0.17 <b>±</b> 0.30 |
| (=0 _= )                                     | -0.86 <b>±</b> 0.30 |

Gasser, Leutwyler, Phys.Rep 87, 77 "Quark Masses"

$$\Delta M_B = M_{B_1} - M_{B_2} = (\Delta M_B)_H + (\Delta M_B)_{EM}$$
$$(p-n)_{exp} \sim -1.293 \text{ MeV} \qquad (p-n)_{EM} \sim 0.76 \text{ MeV}$$







#### In the ChSM, $(\Delta M_B)_{\rm EM} = \langle B | J_\mu(x) J^\mu(0) | B \rangle = \langle B | \mathcal{O}_{\rm EM} | B \rangle$

$$\mathcal{O}_{\rm EM} = -\frac{e^2}{2} \int d^3x \, d^3y D_{\gamma}(x, y) \int \frac{d\omega}{2\pi} \operatorname{tr} \left\langle x \left| \frac{1}{\omega + iH} \gamma_{\mu} \lambda^a \right| y \right\rangle \left\langle y \left| \frac{1}{\omega + iH} \gamma_{\mu} \lambda^b \right| x \right\rangle D_{Qa}^{(8)} D_{Qb}^{(8)} \right.$$
$$= \alpha_1 \sum_{i=1}^3 D_{Qi}^{(8)} D_{Qi}^{(8)} + \alpha_2 \sum_{p=4}^7 D_{Qp}^{(8)} D_{Qp}^{(8)} + \alpha_3 D_{Q8}^{(8)} D_{Q8}^{(8)}$$

1

#### It can be further reduced to

G. S. Yang, H.-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011)



$$(M_p - M_n)_{\rm EM} = \frac{1}{5} \left( c^{(8)} + \frac{4}{9} c^{(27)} \right)$$
$$(M_{\Sigma^+} - M_{\Sigma^-})_{\rm EM} = c^{(8)}$$
$$(M_{\Xi^0} - M_{\Xi^-})_{\rm EM} = \frac{4}{5} \left( c^{(8)} - \frac{1}{9} c^{(27)} \right)$$

#### **Coleman-Glashow** relation

$$(M_p - M_n)_{\rm EM} = (M_{\Sigma^+} - M_{\Sigma^-})_{\rm EM} - (M_{\Xi^0} - M_{\Xi^-})_{\rm EM}$$

| <i>EM</i> [MeV]                                          | Exp. [input]       |      |
|----------------------------------------------------------|--------------------|------|
| $(M_p - M_p)_{FM}$                                       | 0.76±0.30          |      |
| $(M_{\Sigma^+} - M_{\Sigma^-})_{EM}$                     | -0.17±0.30         |      |
| (M <sub>≡0</sub> –M <sub>Ξ</sub> -) <sub><i>EM</i></sub> | -0.86±0.30         |      |
| $c^{(8)} = -0.15 \pm$                                    | $0.23, c^{(27)} =$ | 8.62 |

 $\pm 2.39$ 



$$(M_p - M_n)_{\rm EM} = \frac{1}{5} \left( c^{(8)} + \frac{4}{9} c^{(27)} \right)$$
$$(M_{\Sigma^+} - M_{\Sigma^-})_{\rm EM} = c^{(8)}$$
$$(M_{\Xi^0} - M_{\Xi^-})_{\rm EM} = \frac{4}{5} \left( c^{(8)} - \frac{1}{9} c^{(27)} \right)$$

**Coleman-Glashow** relation

X = fit

$$(M_p - M_n)_{\rm EM} = (M_{\Sigma^+} - M_{\Sigma^-})_{\rm EM} - (M_{\Xi^0} - M_{\Xi^-})_{\rm EM}$$

| EM [MeV]                                          | Exp. [input] | reproduced |
|---------------------------------------------------|--------------|------------|
| $(M_p - M_p)_{FM}$                                | 0.76±0.30    | 0.74±0.22  |
| $(M_{\Sigma^+} - M_{\Sigma^-})_{EM}$              | -0.17±0.30   | -0.15±0.23 |
| (M <sub>≡0</sub> –M <sub>≡</sub> -) <sub>EM</sub> | -0.86±0.30   | -0.88±0.28 |

 $c^{(8)} = -0.15 \pm 0.23, \quad c^{(27)} = 8.62 \pm 2.39$ 



| $(\Delta M_{B_{10}})_{\rm EM}$                 | Numerical results | $(\Delta M_{B_{10}})_{\rm EM}$                 | Numerical results |
|------------------------------------------------|-------------------|------------------------------------------------|-------------------|
| $(M_{\Delta^{++}} - M_{\Delta^{+}})_{\rm EM}$  | $1.60\pm0.46$     | $(M_{\Delta^{++}} - M_{\Delta^0})_{\rm EM}$    | $1.84\pm0.54$     |
| $(M_{\Delta^+} - M_{\Delta^0})_{\rm EM}$       | $0.24\pm0.10$     | $(M_{\Delta^+} - M_{\Delta^-})_{\rm EM}$       | $-0.89\pm0.26$    |
| $(M_{\Delta^0} - M_{\Delta^-})_{\rm EM}$       | $-1.13\pm0.30$    | $(M_{\Delta^{++}} - M_{\Delta^{-}})_{\rm EM}$  | $0.71\pm0.29$     |
| $(M_{\Sigma^{*+}} - M_{\Sigma^{*0}})_{\rm EM}$ | $0.24\pm0.10$     | $(M_{\Sigma^{*+}} - M_{\Sigma^{*-}})_{\rm EM}$ | $-0.89\pm0.26$    |
| $(M_{\Sigma^{*0}} - M_{\Sigma^{*-}})_{\rm EM}$ | $-1.13\pm0.30$    |                                                |                   |
| $(M_{\Xi^{*0}} - M_{\Xi^{*-}})_{\rm EM}$       | $-1.13\pm0.30$    |                                                |                   |



#### Present analysis reproduces all kind of well-known mass relations

Coleman-Glashow relation is still satisfied

$$M_p - M_n = (M_{\Sigma^+} - M_{\Sigma^-}) - (M_{\Xi^0} - M_{\Xi^-})$$

Generalized Gell-Mann-Okubo relation

$$2(M_p + M_{\Xi^0}) = 3M_{\Lambda} + \overline{M}_{\Sigma} + (M_{\Sigma^+} - M_{\Sigma^-}) + \frac{2}{3}\Delta M_{\Sigma},$$
  
$$2(M_n + M_{\Xi^-}) = 3M_{\Lambda} + \overline{M}_{\Sigma} - (M_{\Sigma^+} - M_{\Sigma^-}) + \frac{2}{3}\Delta M_{\Sigma},$$

where  $\Delta M_{\Sigma} = M_{\Sigma^+} + M_{\Sigma^-} - 2M_{\Sigma^0}$ .

When the effect of the *isospin sym. br* is turned off,  $2(\overline{M}_N + \overline{M}_{\Xi}) = 3M_{\Lambda} + \overline{M}_{\Sigma}$ 

★ Generalized *Guadagnini* formulae

$$8\left(\overline{M}_N + \overline{M}_{\Xi^*}\right) + 3\overline{M}_{\Sigma} = 11\overline{M}_{\Lambda} + 8\overline{M}_{\Sigma^*}$$