Baryon Interactions from Lattice QCD with physical masses

Takumi Doi
(Nishina Center, RIKEN)

for HAL QCD Collaboration
The journey from Quarks to Universe

- QCD vacuum
- Baryons
- Nuclei
- Neutron Stars / Supernovae

QCD

1st-principle Lattice QCD

Baryon Forces

ab-initio nuclear calc.

Nuclear Forces / Hyperon Forces

EoS of Dense Matter

J-PARC

ASTRO-H

KAGRA/ aLIGO

© Leinweber
The journey from unphysical to physical quark masses

We were here

\[\pi_L = 0.4 \text{ GeV} \]
\[L = 3 \text{ fm} \]

\[\rightarrow \] lighter \(m_q \)

\textbf{Phys. point}

\textbf{K-computer}

\textbf{Hadrons to Atomic nuclei from Lattice QCD (HAL QCD Collaboration)}

S. Aoki, S. Gongyo, D. Kawai, T. Miyamoto (YITP)
T. Doi, T. Hatsuda, Y. Ikeda (RIKEN)
F. Etminan (Univ. of Birjand)
T. Inoue (Nihon Univ.)
T. Iritani (Stony Brook Univ.)
N. Ishii, K. Murano (RCNP)
H. Nemura, K. Sasaki (Univ. of Tsukuba)

+ Collaboration in HPCI Field5 Project 1
• **Outline**

 — Introduction

 – Theoretical framework

 – Results at heavy quark masses

 – Reliability test of LQCD methods

 – Results at physical quark masses

 – Summary / Prospects
HAL QCD method

NBS wave func.

\[\psi_{NBS}(\vec{r}) = \langle 0 | N(\vec{r}) N(\vec{0}) | N(\vec{k}) N(-\vec{k}), in \rangle \]

\[= R e^{i\delta_i(k)} \sin(kr - l\pi/2 + \delta_i(k))/(kr) \]

(at asymptotic region)

Lat Nuclear Force

\[(k^2/m_N - H_0) \psi(\vec{r}) = \int d\vec{r}' U(\vec{r}, \vec{r}') \psi(\vec{r}') \]

E-indep (& non-local) Potential: Faithful to phase shifts

Analog to ...

Phase shifts

Phen. Potential
Recent Crucial Development

- **Time-dependent HAL method**
 - [Luscher’s method] (traditional) \(\Rightarrow\) ground state saturation \(\Rightarrow\) very bad S/N
 \[S/N \sim \exp[-A \times (m_N - 3/2m_\pi) \times t] \]
 - [HAL method] \(\Rightarrow\) ground state saturation NOT required w/ E-indep pot
 \(\Rightarrow\) “exponential” S/N Improvement
 \[S/N \sim \exp[-A \times (m_N - 3/2m_\pi) \times t] \]

- **Coupled Channel systems**
 - Coupled channel potentials can be extracted above inelastic threshold
 \(\Rightarrow\) Essential for YN/YY-forces

- **Unified Contraction Algorithm (UCA)**
 - Drastically faster algorithm by unifying Wick and color/spinor contractions
 Speedup: \(\times 192\) for \(^3\text{H}/^3\text{He}\), \(\times 20736\) for \(^4\text{He}\), \(\times 10^{11}\) for \(^8\text{Be}\)
• **Outline**
 – Introduction
 – Theoretical framework
 – **Results at heavy quark masses**
 – Reliability test of LQCD methods
 – Results at physical quark masses
 – Summary / Prospects
SU(3) study

BB potentials

NN sector

- 1S_0
 - Strong repulsive core

- $^3S_1 - ^3D_1$
 - $27,10^*$: Same as NN

YN/YY sector

- 8s,10: Strong repulsive core
 - Attractive core!

- 8s,10: Deep attractive pocket

SU(3) lat → Physical point

- $m_{BB} = 2380\text{MeV}$
- $m_{NN} = 2260\text{MeV}$
- $m_H = 120\text{MeV}$
- $m_{\Delta\Delta} = 2230\text{MeV}$

Repulsive core \(\leftrightarrow\) Pauli principle!

a=0.12fm, L=3.9fm, $m(PS) = 0.47$-1.2GeV

T.Inoue et al. (HAL), NPA881(2012)28

M.Oka et al., NPA464(1987)700
• **Outline**
 – Introduction
 – Theoretical framework
 – Results at heavy quark masses
 – Reliability test of LQCD methods

\[
\begin{array}{ll}
\text{NN } \left(^1S_0, ^3S_1 \right) \text{ @ heavy masses:} & \\
\text{HAL method} \quad \text{(HAL)} & : \text{unbound} \\
\text{Luscher’s method} \quad \text{(Yamazaki et al./ NPL/ CalLat)} & : \text{bound}
\end{array}
\]

– Results at physical quark masses
– Summary / Prospects
Reliability Test of LQCD methods

- High-stat study for BB-system (@m(\pi)=0.5GeV)
 - Benchmark w/ two LQCD setup (wall & smeared src)

\[\Delta E = m\Xi \Xi(1S_0) - 2m \Xi \Xi(1S_0) \]

\[S/N \sim \exp[-\alpha t] \]

Inconsistent “signal” (red (wall) vs blue (smeared))
- cannot judge which (or neither) is reliable

\[V_{\text{eff}}(r) \text{ from wall & } V^{\text{LO}}(r) \text{ from wall+smeared} \]
- are consistent

HAL method (new !)

T. Iritani et al. (HAL Coll.)
Understand the origin of “fake plateaux”

Potential

- $t = 15$
- $t = 13$
- $t = 11$

NBS correlator $\Psi(r,t)$

- smeared src.: $t = 14$
- $t = 13$
- $t = 12$
- wall src.: $t = 13$
- $t = 15$

Solve Schrödinger eq. in Finite V

Eigen-wave functions

Eigen-energies

<table>
<thead>
<tr>
<th>n-th A1</th>
<th>ΔE_n [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2.58(1)</td>
</tr>
<tr>
<td>1</td>
<td>52.49(2)</td>
</tr>
<tr>
<td>2</td>
<td>112.08(2)</td>
</tr>
<tr>
<td>3</td>
<td>169.78(2)</td>
</tr>
<tr>
<td>4</td>
<td>224.73(1)</td>
</tr>
</tbody>
</table>

Decompose NBS correlator to each eigenstates
Decompose NBS correlator to each eigenstates

NBS correlator $\Psi(r,t)$

Contribution from each (excited) states (@ t=0)

R-correlator $R(t) = \sum_r \Psi(r,t)$

(R(t) w/ smeared has been used in Luscher’s method)

Contribution from each (excited) states (@ t=0)

Excited States

G.S.

Blue: smeared

Red: wall

excited states NOT suppressed

excited states suppressed

Excited States
Understand the origin of “fake plateaux”

We are now ready to “predict” the behavior of $m(\text{eff})$ of ΔE at any “t”

“prediction” reproduce the real data well

To obtain a “real plateau”, $t/\alpha > 100$ ($t > 10\text{fm}$) is necessary

Extreme care is necessary for the results from the Luscher’s method
Understand the origin of “fake plateaux”

We are now ready to “predict” the behavior of $m(\text{eff})$ of ΔE at any “t”

To obtain a “real plateau”, $t/a > 100$ ($t > 10\text{fm}$) is necessary

Extreme care is necessary for the results from the Luscher’s method
• **Outline**
 – Introduction
 – Theoretical framework
 – Results at heavy quark masses
 – Reliability test of LQCD methods
 – **Results at physical quark masses**
 – Summary / Prospects
Simulations w/ ~ physical masses

HPCI Strategic Program Field 5
“The origin of matter and the universe”
FY2010-15

Gauge Config Generation

- Nf = 2+1 full QCD
 - clover fermion + Iwasaki gauge w/ stout smearing
 - volume: 96^4 ~ (8 fm)^4
 - 1/a ~ 2.3 GeV (a ~ 0.085 fm)
 - m_π ~ 145 MeV, m_K ~ 525 MeV
 - #traj ~ 2000 generated

Baryon Forces

⇒ HAL QCD method
Strategy for phys point BB-forces calc

• Focus on the most important forces:
 – Central/tensor forces for all NN/YN/YY in P=(+) (S, D-waves)
 • Hyperon forces provide precious “predictions”

<table>
<thead>
<tr>
<th>S=0</th>
<th>S=-1</th>
<th>S=-2</th>
<th>S=-3</th>
<th>S=-4</th>
<th>S=-5, -6</th>
</tr>
</thead>
</table>

- **NN**
- **ΛN, ΣN**
- **ΛΛ, ΛΣ, ΣΣ, ΞΞ**
- **ΛΞ, ΣΞ**
- **ΞΞ**
- **ΩΩ**

“milestone-postdiction”

Hypernuclear phys @ J-PARC
H-dibaryon ?, Ξ-hypernuclei

Λ appearance in NS & EoS ?

New bound state(s) ?

Code:
Efficient implementation of UCA
Performance on K @ 2048node:
~25% of peak (~65 Tflops sustained)

Setup:
Wall source w/ Coulomb gauge + temporal DBC
#stat ~= 200conf x 4rot x 20-44src ➔ ~x2-4 in FY2015

Weak scaling
(total of Hadron-Force code, w/o IO)
ΩΩ system in 1S_0

A new exotic dibaryon

⇒ HIC experiments?

[S. Gongyo / K. Sasaki]

B.E.(QCD) ~ = a few - 10 MeV
$^1S_0 \quad \Xi \Xi$-Potentials

$^3S_1-^3D_1$

- $^1S_0 \sim 27$-plet
 \Leftrightarrow NN(1S_0) + SU(3) breaking

- $^3S_1-^3D_1 \sim 10$-plet
 \Leftrightarrow unique w/ hyperon DoF
 \Leftrightarrow Σ^- in neutron star

Preliminary

Central Tensor
phase shifts ($^{1}S_{0}$)

($^{1}S_{0}$) is unbound

(t-dependence will be checked again w/ larger #stat)

➔ HIC experiments?

c.f. Phen. model (Nijmegen) : possibly bound
EFT (Haidenbauer et al. ‘14) : unbound favored

(2-gauss + 2-OBEP fit)
(200conf x 4rot x 44src)
\(\Lambda \Lambda, N \Xi, \Sigma \Sigma \) coupled channel (I=0) \(^1S_0 \)

H-dibaryon channel

Diagram

- **Diagonal**
 - \(m_{\Sigma \Sigma} = 2380 \text{MeV} \)
 - 120 MeV
- **Off-diagonal**
 - \(m_{N \Xi} = 2260 \text{MeV} \)
 - 30 MeV
- **Strong Attraction in flavor-singlet channel**

\[m_{\Lambda \Lambda} = 2230 \text{MeV} \]

[K. Sasaki]
$\Lambda\Lambda$, $N\Xi$ (effective) 2x2 coupled channel analysis

$\Lambda\Lambda$, $N\Xi$ phase shifts

H-dibaryon may exist as a resonance just below $N\Xi$ threshold

N.B. systematics from time-dependence should be checked

$\Sigma\Sigma$ mass: 2380 MeV

$N\Xi$ mass: 2260 MeV

$\Lambda\Lambda$ mass: 2230 MeV

Preliminary

[K. Sasaki]
NΞ-Potentials

KISO-event (2014): $\Xi^{-}\rightarrow^{14}\text{N} : \text{B.E.} = 4.38(25) \text{ MeV} (\text{or } 1.11(25) \text{ MeV})$

- $N\Xi (l=0, ^3S_1)$: Attractive
- $N\Xi - \Lambda\Sigma (l=1, ^1S_0)$: Repulsive
- $N\Xi - \Lambda\Sigma - \Sigma\Sigma (l=1, ^3S_1)$: Attractive

Is interaction net attractive? Stay tuned!

(net attractive @ $m(\pi)=0.66-88\text{GeV}$)
NN-Potentials

\[{^1S_0} \]

\[{^3S_1-^3D_1} \]

Vc: repulsive core
+ long-range attraction

Vt: tensor force clearly visible

Preliminary

(200conf x 4rot x 44src)
NN-Potentials (tensor)

- Similar structure to phenomenological potential
- Larger t w/ larger #stat is desirable
The 1st LQCD calc of Baryon Interactions at ~ phys. point
- $m(\pi) \sim 145$ MeV, $L \sim 8$ fm, $1/a \sim 2.3$ GeV
- Central & Tensor forces calculated for all NN/YN/YY in $P=(+)$ channel
- Various exciting results from precise prediction to semi-quantitative arguments

HAL QCD method
- t-dep HAL method avoids S/N issue by g.s. saturation
- Suitable for coupled channel systems
- Unified contraction algorithm for computations
- (Difficulty in Lushcer’s method shown explicitly)

Prospects
- Measurement in progress \Rightarrow #stat will be $\sim 2-4$ in FY2015
- LS-forces, $P=(-)$ channel, 3-baryon forces \Rightarrow towards post K
- Resonances / Exotics (talk by Y. Ikeda, on Tue.) & more