Ken Hicks Now Pentaquarks, **What's the Next?** Jung Keun Ahn **Hexaquark!**

• • •

H-Dibaryon Production in the ${}^{12}C(K^-, K^+)$ reaction at $p_{K^-} = 1.8 \text{ GeV}/c$

Jung Keun Ahn (Korea University)

Outline

- Review on the H-Dibaryon Search
- J-PARC E42 Experiment
- **3** H-Dibaryon Formation in the (K^-, K^+) Reaction

Progress in last three years since 2012.

Brief History about the H-Dibaryon Search

40 Years!

- Deeply-bound di-hyperon predicted by R. Jaffe (1977).
- No evidence for the deeply-bound H from KEK, BNL, and CERN experimental efforts by more than 80 MeV (1980-2000s).
- Mass constraint from observation of $^{6}_{\Lambda\Lambda}$ He (E373).
- Enhanced AA production near threshold was reported from E224 and E522 at KEK-PS.
- No evidence for $H \rightarrow \Lambda p\pi^-$ and $H \rightarrow \Lambda\Lambda$ in high-energy e^+e^- , pp and AA collisions from Belle, STAR, and ALICE.

Double- Λ Hypernuclei and $\Lambda\Lambda$ Production

- $\Lambda\Lambda$ pair decays strongly to the Hin a nucleus if H is lighter than $\Lambda\Lambda$ in a nucleus.
- KEK-E224 measurement for ${}^{12}C(K^-, K^+)\Lambda\Lambda X$ (7.6 µb/sr and 3 µb/sr for the H)

Double- Λ Hypernuclei and Stable H^{1}

- Can the *H*-nuclei and *∧∧*-hypernuclei coexist?
- $\Lambda\Lambda$ bound in the lowest *s*-orbit of a hypernucleus may be kept apart by a repulsive short-range potential barrier long enough to allow weak decay to compete with *H* formation.
- Observation of Λ decays in double- Λ hypernuclei does not exclude an H stable or not as long as $r_H < 1/3r_N$.
- If not, the strong decay, for example, ${}^{6}_{\Lambda\Lambda}$ He \rightarrow H α , should be much more rapid than the weak decay.

¹G.R. Farrar and G. Zaharijas, *arXiv:hep-ph/0303047*

H-Dibaryon from Lattice QCD^2

Recent LQCD calculations seem to point to a weekly bound H or resonant state although we have got to wait for definite results with physical quark masses.

²HAL Collab., PRL 106 (2011)/ NPLQCD Collab. PRL 106 (2011)/ Shanahan, Thomas, Young, PRL 107 (2011)

H-Dibaryon from Lattice QCD³

■ $\Lambda\Lambda$ and $N\Xi$ (I = 0) ¹S₀ Phase Shifts

³K. Sasaki for the HAL Collab., HYP2015 (2015)

Bound, Virtual State $(a_{\Lambda\Lambda} = \infty)$, or Resonance?

The existence of the H-dibaryon still awaits definitive experimental confirmation or exclusion.

- Neakly-bound : $H o \Lambda p \pi^-$
- Virtual state : $\Lambda\Lambda$ threshold effect
- Resonance : Breit-Wigner peak in the $\Lambda\Lambda$ mass spectrum

The J-PARC-E42 experiment searches for the H-dibaryon

- III in $\Sigma^- p$, $\Lambda p \pi^-$, $\Lambda \Lambda$ and $\Xi^- p$ channels
- ${\scriptstyle \ensuremath{\mathbb Z}}$ by tagging the ${\it S}=-2$ system production
- 3 via (K^-, K^+) reactions at 1.8 GeV/*c* with a diamond target.

H-Dibaryon Search at J-PARC : E42

■ Hyperon Spectrometer : 1 MeV AA mass resolution!

Hyperon Spectrometer

The Hyperon spectrometer consisting of a time projection chamber (HypTPC) in the superconducting dipole magnet will be placed between the K1.8 beam spectrometer and the forward KURAMA spectrometer.

Superconducting Magnet and TPC

The conduction-cooled superconducting magnet and the time projection chamber will be soon ready.

Yield Estimate

Parameters	Proposal	New Values
K ⁻ beam	$10^{6}K^{-}$ / spill (6 s)	$6 \times 10^5 K^-$ / spill (5.5 s)
Target length	15 mm	20 mm
Number of nuclei	$2.65 imes10^{23}/ ext{cm}^2$	
$d\sigma/d\Omega^C_L(\Lambda\Lambda)$	7.6 μb/sr	
$\Delta\Omega(K^+)$	0.11 sr	0.16 sr
${\sf Br}(\Lambda o p\pi^-)^2$	0.41	
K^+ Reconstruction	0.5	
$\Lambda\Lambda$ Reconstruction	0.4-0.6	
Yield	0.023 event / spill	0.03 event / spill

Diamond ^{12}C target.

■ 15000 $\Lambda\Lambda$ events for 100 shifts at the current beam power.

A Full Simulation on the Hyperon Spectrometer

A full Geant4 simulation on the response of the HypTPC.

Simulated $\Lambda\Lambda$ Spectrum from E42

H Production from (K^-, K^+) Reactions^{4 5}

Lowest-order process for H production on a diproton pair

$$K^{-} + (pp)^{1}S_{0} \rightarrow K^{+} + (\Xi^{-}p)^{1}S_{0} \rightarrow K^{+} + H(J^{\pi} = 0^{+})$$

The decay vertex amplitude Γ describes the fusion of $\Xi^- p$ systems into a six quark state H of radius R:

⁴N. Aizawa and M. Hirata, Z. Phys. A 343, 103 (1992)
⁵A.T.M. Aerts and C.B. Dover, Phys. Rev. D28, 450 (1983)

Higher-order H Production Processes ⁶

Higher-order processes for H production on a diproton in the (K^-, K^+) reaction:

⁶A.T.M. Aerts and C.B. Dover, Phys. Rev. D28, 450 (1983)

Momentum Transfer in the (K^-, K^+) Reeaction ⁷

Correlated Pairs in Nuclei⁸

⁸M. Vanhalst, W. Cosyn and J. Ryckebusch, Phys. Rev. C84, 031302(R) (2011)

Intranuclear Cascade Model Calculation⁹

⁹Y. Nara, A. Ohnishi, T. Harada and A. Engel, Nucl. Phys. A614, 433 (1997)

Lineshape Analysis

- Detailed lineshape analysis is possible due to 1-MeV mass resolution.
- Asymmetric or distorted lineshapes, or cusp in the mass spectrum!

Spin Analysis

Spin composition measurement from E224: $\frac{dN}{d\cos\theta^*}\Big|_{s=0} = 1 - \alpha_{\Lambda}^2 \cdot \cos\theta^*$ $\frac{dN}{d\cos\theta^*}\Big|_{s=1} = 1 + \frac{1}{3}\alpha_{\Lambda}^2 \cdot \cos\theta^*,$

where θ^* is the angle between the two decay protons in the $\Lambda\Lambda$ rest frame.

Other Physics Opportunities

- The Hyperon Spectrometer is also utilized for the E45 experiment, where baryon resonances are studied in $\pi p \rightarrow \pi \pi N$ reactions.
- Radiative $\Lambda(1405)$ decay measurement could provide a new insight on the nature of $\Lambda(1405)$.
- The K^-pp nuclear system can also be studied with the $\pi^+d \rightarrow K^+(K^-pp)$ reaction.
- The HypTPC is also utilized to measure X-rays from Ξ^- capture in 12 C.
- $\blacksquare \ \Xi(1690)^- \text{ in } K^-p \to K^+K^-\Lambda.$
- **f**(1280) decaying into $K^*\overline{K}$ in $K^-p \to K^+K^-\pi\Lambda$.
- Missing nucleon resonances decaying into $K^+\Lambda$ in $K^-p \to K^+K^-\Lambda$.

