J-PARC HI meeting August 10, 2016

(Hadron Physics at J-PARC HI project) Comments on hypernuclei

Tohoku University H. Tamura

Contents

- **1. Hypernuclear physics program with HI beams**
- 2. Magnetic moments
- 3. B(M1) by Coulomb excitation
- 4. Multi-strange hypernuclei (Ξ⁻n system)
- 5. Other interests

Motivations of strangeness nuclear physics

BB interactions

Unified understanding of BB forces by u,d ->u, d, s particularly short-range forces by quark pictures Test lattice QCD calculations

Impurity effect

in nuclear structure

Changes of size, deformation, clustering, Appearing new symmetry, Properties and behavior of baryons in nuclei

μ, size, structure change P Baryon-mixing, BBB forces (ρ dependence)

Clues to understand hadrons and nuclei from quarks Cold and dense nuclear matter with strangeness

Production rates of hypernuclei

Figure 18: Hypernuclear yields at the mid-rapidity of ${}^{3}_{\Lambda}$ H, ${}^{5}_{\Lambda\Lambda}$ H, ${}^{6}_{\Lambda\Lambda}$ He, and ${}^{7}_{\Lambda\Lambda\Xi}$ He calculated by a thermal model as functions of $\sqrt{s_{NN}}$ (GeV) [89].

Detection/identification is a problem rather than production.

Characteristics of hypernuclear studies via HI collisions

Previous data

- $^4{}_{\Lambda}\text{H}\text{:}$ (7Li, 4He on $^{12}\text{C}\text{)}$ JINR
- ${}^3{}_{\Lambda}\text{H}{:}~(11.5~\text{GeV/A}~\text{Au on Pt})~\text{BNL-AGS}$
- ${}^3_{\Lambda}$ H, ${}^4_{\Lambda}$ H: (2 GeV/A 6 Li on 12 C) GSI (HypHI)
- ${}^{3}_{\Lambda}$ H, ${}^{\overline{3}}_{\Lambda}$ H: (200 GeV Au+Au) RHIC(STAR), (2.76 TeV Pb+Pb) LHC(ALICE)
- Identification of heavier hypernuclei (A>10) is extremely difficult. More nonmesonic decays, emission of more than one neutrons.
- For light hypernuclei (A<10), ab-initio calculations provide direct connection to BB and BBB interactions.</p>
- μ, nuclear radius, and B(M1)/B(E2) (some cases) cannot be measured by conventional (K-,π), (π,K+), (e,eK+) methods.
- "Closed geometry" to select rigidity of the tracks is essential, particularly powerful for n-rich/multi-strange large-rigidity hypernuclei

by the ⁶Li projectiles at 20 A GeV.

Hypernuclear physics program

Magnetic moment and B(M1)

=> Baryon properties in a nucleus $\Lambda N-\Sigma N$ mixing, Baryon structure change? Effect of chiral symmetry restoration?

- Magnetic moment of ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ He, ...
- Λ -spin-flip B(M1) of ${}^{4}_{\Lambda}$ H/ ${}^{4}_{\Lambda}$ He... by Coulomb excitation

Neutron-rich/ Multi-strange hypernuclei

=> BB/BBB interactions, $\Lambda N-\Sigma N / \Lambda \Lambda-\Xi N$ mixing

- Λ nn, ${}^{6}_{\Lambda}$ H, ${}^{4}_{\Lambda\Lambda}$ H, ${}^{5}_{\Lambda\Lambda}$ H, ... (strangelet)
- Ξ^-n , Ξ^-n , Ω^-n ,.. (strangelet) "Weakly-decaying negatively-charged nuclei"

Lifetimes, weak decay branching ratios

=> baryonic weak interaction, hypernuclear structure

• ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$, $({}^{4}_{\Lambda}He$, ${}^{5}_{\Lambda}He$,), ..., $\Xi^{-}n \rightarrow \Sigma^{-}n$

Interaction cross section in matter => Nuclear radius, neutron halo

• Size of ${}^{3}_{\Lambda}$ H, ${}^{6}_{\Lambda}$ H, ${}^{7}_{\Lambda}$ He,..

Gamma decays, B(E2) by Coulomb excitation

=> Impurity effect: changes of deformation, halo, collective motion,...

•
$${}^{7}_{\Lambda}$$
He, ${}^{9}_{\Lambda}$ Be, ${}^{13}_{\Lambda}$ C,.

Slide by T.R. Saito Hypernuclear separator (Phase 3) Hypernuclear production at 20 A GeV at the FAIR facility Hypernuclei separated by a superconducting magnet

HypHI Phase 3

Removing light hadrons from the hypernuclear decay before the sweeping magnet.

Interests of $\mu_{\underline{\Lambda}}$ in nucleus

Baryon properties in nuclear medium

Structure change? Swelling?

Effect of partial restoration of chiral symmetry??

How μ_N changes? -- Clue to understand the **origin of baryon magnetic moment**

Constituent quark: μ_B looks OK with $\mu_q = \frac{e\hbar}{2m_q c}$ Current quark: *nucleon spin* = quark spin (~0.2) + gluon spin + L How to understand μ_B ?

 \Rightarrow Can be investigated only by a Λ (free from Pauli)

in 0s orbit.

<u>Pauli effect between quarks</u> ("quark exchange current")

changes μ_B in nucleus sensitive to baryon size (b)

• Quark Cluster Model Takeuchi et al., N.P. A481(1988) 639 $\delta\mu/\mu$: ${}^{4}_{\Lambda}$ He(1⁺) -1% ~ -2%, larger by Σ mixing ${}^{4}_{\Sigma}$ +Li(1⁺) -40% ~ -100%

⁵₄He : -9%

b = 0.6 fm -> 0.8 fm, μ becomes twice large.

 $\begin{array}{c|c} & & & \\ &$

T≠0 only

⁶₄Li : -2%

Saito et al.,

N.P. A625 (1997) 95

- Meson exchange current
- Sigma mixing effect
 - ~ +2--5 % for ${}^{5}_{\Lambda}$ He (Dover-Gal)

Measurement of a few % is desired.

Systematic study of ρ and T dependence (${}^{3}_{\Lambda}H$, ${}^{5}_{\Lambda}He$, ${}^{7}_{\Lambda}He$) will discriminate these effects.

<u>Magnetic moment of ${}^{5}_{\Lambda}$ He</u>

<u> Λ -Spin-flip B(M1) for g_{Λ} in nucleus</u>

How to measure lifetimes for hypernuclear γ transitions

<u>M1 Coulomb excitation for ${}^{4}_{\Lambda}H$ (0+->1+)</u> 2000 ${}^{4}_{\Lambda}H + {}^{208}Pb$ **B(M1)** ~ 2.6 $\mu_{\rm N}^2$ Equivalent Photon Number N_{eq} 1000 $E_{x} = 1.1 \text{ MeV}$ **E2** x 1/100 500 HypHI LOI: ${}^{4}_{\Lambda}$ He yield ~2x10⁵ / week 200 **E1** 100 **M1** 50 **Reaction cross section** 20 GeV/A ~ π [R(⁴_{\(\Lambda\)</sup>H)+R(²⁰⁸Pb)]²} 1.9 GeV/A 20 = 2.5 b10 (Nuclear spin-flip excitation Ō.05 0.10 5.00 0.50 1.00 10.00 should be estimated with E/A (GeV/A) lighter target nuclei.) Should be studied

 σ (0+->1+) [mb] = 4.43x10⁻² * N_{eq}(M1) * B(M1) [μ_N^2] = 20 mb (E/A=20 GeV/A) 13 mb (E/A=1.9 GeV/A)

<u>Study of E⁻n bound system</u>

In general, Ξ hypernuclei decay via Ξ -p -> $\Lambda\Lambda$ at the same vertex point as production => Identification extremely difficult

 Ξ n (S=1, I=1) is predicted to be bound, deuteron analog in {10*}, BE= 3.6 MeV from ESC08a Kiso event and recent E05 pilot data suggest a rather deep Ξ -nulcear attractive potential => Weakly-decaying Ξ hypernuclei? Ξ -n, Ξ ⁰p, Ξ -nn(?),

 Ξ^- n -> $\Lambda \pi^-$ n (Ξ n (S=0, I=1) is predicted to be strongly repulsive) Weakly-decaying negatively-charged nuclei can be easily

separated and identified. Ξ^-n , Ξ^-nn , (Σ^-n) , Ω^-n

d (K-,K+) $[\Xi^{-}n]$ => Accurate binding energy HI => Lifetime and Decay mode ($\Xi^{-}n$ -> $\Sigma^{-}n$: suppressed?), size $\begin{bmatrix} \Xi^{-} & r \\ I & \pi \end{bmatrix}$

Other subjects of personal interest

B-B correlation

- => $\Lambda \Sigma$, $\Sigma \Sigma$, $\Xi \Lambda$, ΩN interactions ?
 - -- Feasibility should be studied
- BB correlation data for various A and collision energy => density dependence of in-medium BB forces??
 - -- Theoretical support necessary
- Meson mass spectrum for various A and collision energy => density dependence of chiral symmetry restoration??

-- Theoretical support necessary

