

京大基研 大西 明

J-PARC-HI インフォーマルミーティング Aug.10, 2016, J-PARC, Japan

Physics at J-PARC-HI program

- Goals of J-PARC-HI program
 - QCD phase diagram (1st or 2ndnd order phase transition)
 - Chiral restoration (probed by dileptons and others)
 - Collective dynamics of hadrons (EOS & Thermalization)
 - Strange matter search (nuclei with exotic constituents and their interactions)
 - •••
- Already explored energies at AGS ! But ...
 - There are many unobserved quantities at AGS Dilepton spectrum, Spectral function of resonances, Cumulants of conserved charges, Higher order flow harmonics, ...
 - Intensity is much stronger at J-PARC-HI Much more accurate data of standard observables, Event selected flow (e.g. strangeness number tagged, T. Sakaguchi), K* and K₁ spectral functions (H. Ohnishi),

QCD Phase Diagram

Two ways to probe QCD phase transition

Nuclear Liquid-Gas Phase Transition

A. Ohnishi @ J-PARC-HI 2016, Aug. 10, 2016 5

T. Furuta, A.Ono ('09)

Horn, Step and Dale

Non-monotonic behavior in K⁺/π⁺ ratio (Horn), m_τ slope par. (Step or re-hardening), rapidity dist. width of π

Net-Proton Number Cumulants & Directed Flow

Directed Flow

P. K. Sahu, W. Cassing, U. Mosel, AO, Nucl. Phys. A 672 (2000),376

Elliptic Flow

M. Isse, A. Ohnishi, N. Otuka, P. K. Sahu, Y. Nara, PRC72('05)064908

Where do we find FOPT ?

1st order phase transition: $\rho_B = (3-10) \rho_0$, $P = (80-700) MeV/fm^3$

Directed Flow with Attractive Orbits

Nara, Niemi, AO, Stöcker ('16)

Softening of EOS by Attractive Orbits

Phase Transition Signal at J-PARC Energies

- J-PARC energy (√s_{NN}=3-6 GeV) は色々なシグナルが始まる付近。 High intensity の特徴を生かせば onset of deconfinement を見つ けることができるかも知れない。
- ■輸送模型の計算結果は十分に高密度に達しており、 小さな体積で短い時間、QGP ができていると思っても自然。
- 揺らぎにより密度・温度が高くなったイベントを集めると、 OGP 生成のシグナルが見えるのでは? 300 例:ストレンジクォーク対生成数で Evn. Ave. 250 タグしたイベントを集める。 **Straginity**? 200 (坂口さんのアイデア) T (MeV) 150 **Strangity, Baryonity** 100 50 25 AGeV 0

AO (JHF workshop, 2002); J. Phys: Conf. Ser. 668 ('16)012004

8

Pb/Po

10

12

A. Ohnishi @ J-PARC-HI 2016, Aug.10, 2016 13

2

0

Chiral Symmetry Restoration

- Vector meson の質量変化 (E16)
- カイラルパートナーの spectral function が一致。
 - ρ(770) and a₁ (1230)
 Γ(a₁)=250-600 MeV
 - K* and K₁
 (大西宏明さん)
 K*(892)
 (m,Γ)=(892,47) MeV
 K₁(1270)
 - (m, Γ)=(1272,90) MeV $\rightarrow K^*\pi (16\pm 5\%)$
 - ◎ FSI 効果は?

• $pp \rightarrow pA \rightarrow AA$

Y. Maezawa, ExHIC 2016 workshop.

Relevance of AA interaction to physics

- H-particle: 6-quark state (uuddss)
 - Prediction: R.L.Jaffe, PRL38(1977)195
 - Ruled-out by double Λ hypernucleus *Takahashi et al.,PRL87('01) 212502*
 - Resonance or Bound "H" ? Yoon et al.(KEK-E522) ('07)
 - Lattice QCD HAL QCD & NPLQCD ('11) HAL QCD ('16): H as a loosely bound EN ?
- Neutron Star Matter EOS
 - Hyperon Puzzle
 Demorest et al. ('10), Antoniadis et al. ('13)
 - Cooling Puzzle (ΛΛ superfluidity)
 T. Takatsuka, R. Tamagaki, PTP 112('04)37

QGP signal, BB interaction model,

H-particle Hunting

- 最近の HAL の結果「H は EN しきい値のすぐ下にある」 (K. Sasaki et al.)
- とても浅い束縛状態があると Corr. Fn. に大きな増加があるはず。
- AAの不変質量分布から
 EN 束縛状態のピークを見つけるのは
 今の RHIC の統計では無理。
- J-PARC エネルギーは Λ/π 比が大きい

K. Morita, AO, F. Etminan, T. Hatsuda, arXiv:1605.06765 [hep-ph]

Detecting H Resonance

When the resonance energy is much above the threshold, detecting a resonance is not easy because of huge background.

Summary

■ J-PARC-HI では

Onset of deconfinement,

Chiral restoration,

Confirmation of H & Other Exotics

(multi-strangeness, molecule, ...) などの可能性がある。

しかしどれも極めて non-trivial 。特に相転移効果・ハドロン & パートン自由度を含むシミュレーション・プログラム (流体 + カス ケード)は是非必要。

海外の研究者 (FAIR, NICA の supporting members) を 取り込む、責任ある教員の配置、ポスドク枠の確保などを 行う必要があろう。

Two ways to probe QCD phase transition

Thank you !

