34th REIMEI Workshop on Physics of Heavy-Ion Collisions at J-PARC, August 8-9, 2016

J-PARC E50

Charmed Baryon Spectroscopy via the (π , D^{*-}) reactions

Hiroyuki Noumi RCNP, Osaka Univ.

Quasi-Particles (= Effective DoF) emerging at Low E describe hadron properties effectively.

Quasi-Particles (Effective EoF) in Hadrons

Constituent Quark

hadron (colorless cluster)

Diquark? (Colored cluster)

Diquarks

Color-Magnetic Interaction of two quarks $V_{CMI} \sim [\alpha_s / (m_i m_j)]^* (\lambda_i, \lambda_j) (\sigma_i, \sigma_j)$ $\rightarrow 0 \text{ if } m_{i,j} \rightarrow \infty$

"Good Diquark": Strong Attraction

 $V_{CMI}({}^{1}S_{0}, \overline{3}_{c}) = 1/2*V_{CMI}({}^{1}S_{0}, 1_{c})$ [qq] [qq]

What we can learn from baryons with heavy flavors

- Quark motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

Baryon Spectroscopy w/ Heavy Quark

- Disentangle Quark Correlations in Baryon
 - λ and ρ motions split (Isotope Shift)

Lambda Baryons (P-wave)

	strange	charm	bottom
Λ(1830, 5/2 ⁻) _			
		A_c(2940, ? [?])
Λ (1690, ? [?]) Λ (1670, 1/2 ⁻) ⁼		$\Lambda_{ m c}$ (2880, 5/	⁷ 2 ⁺)
		$\Lambda_{\rm c}$ or $\Sigma_{\rm c}$ (2	765 <i>,</i> ? [?])
Λ (1520, 3/2 ⁻) -		$\Lambda_{ m c}$ (2625, 3/	/2-)
Λ (1405, 1/2 ⁻) _		$\overline{\qquad} \Lambda_{ m c}$ (2595, 1/	$\Lambda_{b}(5920, 3/2^{-})$
∑*(3/2 ⁺) [−]		∑ _c *(3/2⁺)	$\frac{\Lambda_{b}(5912, 1/2^{-})}{\sum_{k}^{*}(3/2^{+})}$
		∑ _c (1/2⁺)	$\Sigma_{\rm b}^{\rm D}(1/2^+)$
Σ (1/2 +)-			
$oldsymbol{\Lambda}(GS)$ –			———— $\Lambda_{b}(GS)$

Charmed Baryon Spectroscopy Using Missing Mass Techniques

✓ Production and Decay reflect [qq] correlation...
 ✓ C.S. DOES NOT go down at higher *L* when *q_{eff} >1 GeV/c*.

Production Rate

 t-channel D* EX at a forward angle

S.H. Kim, A. Hosaka, H.C. Kim, and HN PTEP, (2014) 103D01

Production Rates are determined by the overlap of WFs

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

$$I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$$

A: (baryon size parameter)⁻¹ ~0.4 GeV/c

Production Cross Section (Regge Theor.)

S.H. Kim, A. Hosaka, H.C. Kim, and HN Phys.Rev. D92 (2015) 094021

 $\rho - \lambda$ mixing (cal. By T. Yoshida)

Does $\Lambda(2880)$ have L=2?

- P-wave transition seems to be suppressed in $\Lambda_c(2880)^{\frac{5}{2}^+} \rightarrow \Sigma_c^*(2520)^{\frac{3}{2}^+} + \pi(0^-).$
- It would be forbidden only in the case of $J_{BM}^P = 3^+$:
 - Negative party states "5/2-" have large widths.
 - (H. Nagahiro et al., paper in preparation)

Λ _c (2880) 5/2+	λλ	λρ	ρρ	Σ _c [*] (2520) 3/2+
color	Asymm.			Asymm
Isospin	Asymm. (I=0)			Symm. (I=1)
Diquark spin Diquark orbit	Asymm. 0 Symm. 0	Symm. 1 Asymm. 1	Asymm. 0 Symm, 2	Symm. 1 Symm, 0
Lambda orbit	2	1	0	0
J _{BM} P	2+	1+, 2+, <mark>3+</mark>	2+	1+

- $\Lambda_c(2880)^{\frac{3}{2}+}$ is likely to be $\lambda\rho$ mode ($\lambda=1$, $\rho=1$).
- It can be tested from its production rate.

 $\Gamma(Y\pi) > \Gamma(DN)$

 $\Gamma(DN) > \Gamma(Y\pi)$

* Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^* - pD) / \Gamma(\Lambda_c^* - \Sigma_c \pi)$.

High-res., High-momentum Beam Line • High-intensity secondary Pion beam (unseparated) • 1.0 x 10⁷ pions/sec @ 20GeV/c • High-resolution beam: $\Delta p/p^{\circ}0.1\%$ Production Target Prod. Angle = 0 deg. (Neg.)

 π^{-}

K-

n^{bar}

20

Sanford-Wang 15 kW Loss on Pt Acceptance :1.5 msr%, 133.2 m

5

10

15

[GeV/c]

1.0E+09

1.0E+08

1.0E+07

1.0E+06

1.0E+05

1.0E+04

1.0E+03

Counts/sec

Pion Beam

Up to 20 GeV/c

Spectrometer

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam ->1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: ∆p/p~0.1%

Spectrometer Design

Good resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c

High-rate detectors

* High-rate beam

- 6 × 10⁷ /spill
 (30 MHz @ 2 sec spill)
- Focal plane detector
 - Focal plane region
 - Beam momentum analysis
 - Position and angle

Beam tracker

- At the target upstream
- Size: 100 mm × 100 mm

• Scattered particle tracker

- At the target downstream
- 600 mm × 800 mm
- Time zero counter
 - At the target upstream
 - Reference timing for TOF

Production of prototype detector

• Fibers fixed to Al frames

Al frames are combined by each others.

- Extracted fibers are fixed to the MPPC attaching frames.
 - Attaching frame is fixed to Al frames.
 - Plastic frame (similar material to fibers)
 - Air contact with MPPCs

Production of prototype detector

Large Strip RPC

By N. Tomida (RCNP)

- 2m Long RPC for LEPS2
 - Signal reflection caused by Impedance Mis-Matching
 - Dispersion during Signal Propagation
 - Transmission Line Theory (D. Gonzalez-Diaz)

Change Materials to minimize dispersion during Signal Propagation, changing coupling C to control Signal Propagation Speed

Large Strip RPC

By N. Tomida (RCNP)

- 2m Long RPC for LEPS2
 - Signal reflaction caused by Impedance Matching
 - Dispersion during Signal Propagation
 - Transmission Line Theory (D. Gonzalez-Diaz)

Before (res. ~ 70 ps)

After (res. to be improved)

LEPS/J-PARC joint R&D FPGA-based HR-TDC Test Board

DAC (for bias, threshold)

Muon ID

Nucleon Structure via Exclusive DY

•
$$\pi^- p \rightarrow \mu^+ \mu^- "n"$$

T. Sawada, W.C. Chang , S. Kumano, J.C. Peng, S. Sawada, K. Tanaka, Phys.Rev. D93 (2016) 114034

$P_c(4380), P_c(4450)$

- Is P_c^+ the N* with a hidden c-cbar?
- P⁰_c can be excited on its mass with 10 GeV/c pion beam at J-PARC.
- Its decay modes to $Y_c + \overline{D}$.
- Its family?

Flexible triggers can be accommodated.

ALICE O2 Hardware Facility

Summary

- A heavy quark disentangles quark correlation in baryons.
- A diquark correlation will be singled out in level structure, production rate, and decay branching ratio of excited charmed baryons.
 - Missing mass spectroscopy via p(π⁻, D^{*-})Y_c^{*} is suitable and unique.
- The high-momentum beam line and a general purpose spectrometer will provide a unique platform for hadron physics.