2016/08/09 The 34st Reimei Workshop

Heavy flavor measurements at PHENIX

K.Nagashima Hiroshima Univ./RIKEN

Introduction of heavy flavor measurements

Heavy flavor probe

> large mass

- $m_{c,b} >> \Lambda_{QCD}$ (>> T_{QGP})
- 1/2m_{c,b} << τ_{form}
- hardly generated in QGP
- thorough time evolution
- > allows some pQCD calculation model = pQCD + energy loss model

QGP physical property

- > HF momentum and space variation \rightarrow QGP property
- > model parameters
 - Diffusion constant
 - Gluon density

✓ Quark energy loss mechanism in QGP

collisional energy loss

- parton elastic scattering
- Brownian motion via Langevin equation $\frac{d\vec{p}}{dt} = -\eta_D(p)\vec{p} + \vec{\xi} \qquad \begin{array}{c} \eta_D: \text{ friction coefficient} \\ \xi: \text{ drift force} \end{array}$

radiative energy loss

- Bathe-Heitler for gluon radiation

$$dP_0 \approx \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{dk_\perp^2}{k_\perp^2}$$

> Dead-Cone effect

- strong suppression of HF in small-angle radiation $\propto \frac{k_{\perp}^2 dk_{\perp}^2}{(k_{\perp}^2 + \omega^2 \theta_{\perp}^2)^2}$, $(\theta_0 \equiv \frac{M}{E})$
- > Landau-Pomeranchuk-Migdal effect
- suppression in high density

$\propto rac{\lambda_{path}}{L_{form}}$

mass ordering

 $\Delta \mathsf{E}_{\mathsf{g}} > \Delta \mathsf{E}_{\mathsf{u},\mathsf{d},\mathsf{s}} > (?) \ \Delta \mathsf{E}_{\mathsf{c}} > (?) \ \Delta \mathsf{E}_{\mathsf{b}}$

✓ PHENIX Silicon Vertex Detector (VTX)

Silicon Vertex Detector (VTX)

- installed in 2011
- 2 pixel layers + 2 strip layers
- $(\sigma_{\phi} = 14.4 \ \mu m) \ (\sigma_{\phi} = 23 \ \mu m)$
- reconstruct precise collision vertex

Precise displaced tracking

- Distance of Closest Approach (DCA)
- Transverse DCA of a track is defined as $DCA_T = L R$
- depends on parent particle life time and mass
- DCA resolution = 60 μ m @ 2.5 GeV
- DCA analysis allows separated measurement of bottom and charm
 - -> focus on single electron tracks from smi-leptonic decay channels

DCA distribution of electrons

DCA distribution of electrons

- 1.5 < p_T < 5.0
- no efficiency correction

DCA distribution of electrons

DCA distribution of electrons

- 1.5 < p_T < 5.0
- no efficiency correction

BG normalization and shape

- data driven
 > Mis-hadron, Random
 measured yield + Monte Carlo
 - > Photonic, k_{e3} , J/ψ

Heavy flavor decay electron

- dominates at $|0.04| < DCA_T < |0.1|$

Invariant yield of charm and bottom

Unfolded invariant yield of charm and bottom

Comparison between data and unfolding

Unfolding results agree with measured data well

2016/8/9

K.Nagashima

Bottom electron fraction

Fraction of bottom electrons

 $F = (b \rightarrow e)/(b \rightarrow e + c \rightarrow e)$

<u>p+p data</u>

not generate QGP

- agree with FONLL

<u>Au+Au data</u> (= unfolding)

- difference shape compared to p+p
- significant enhancement at 3 GeV/c
- consistent with p+p for high $p_{\rm T}$

Nuclear Modification Factor R_{AA}

Nuclear Modification Factor R_{AA}

need precise measurements to confirm mass ordering of c/b energy loss
 we are analyzing high statistics and quality data (2014~2016)

Comparison between data and models

"Langevin equation"

- depend on diffusion constant D
- $D(2\pi T) = 6$ agree with data
 - -> strong coupling

"DGLV model (radiative only)"

- depend on gluon density in QGP
- dNg/dy = 1000~3500(?)
- need more precise measurement...

✓ Future Prospects

"High statics and quality data in 2014-2016"

- 2014 Au+Au data x10 statistics compared to 2011
 - > broader p_T range (1.0 9.0 GeV/c)
 - > update invariant yields of HF with centrality and angle
 - > suppress sys. uncertainty with new BG normalization
- 2015 p+p data

> new base line (same method)

"Analysis goal"

- centrality dependence of R_{AA}
- v_n measurements

> strong constraint to QGP physical property, $D(2\pi T)$, $dNg/d\eta$

2016/8/9

K.Nagashima

✓ Summary

- Heavy flavor is important probe for Quark-Gluon Plasma
- Quark energy loss mechanism
 - Langevin equation \rightarrow collisional energy loss
 - Bathe Heitler \rightarrow radiative energy loss
- Measurement of single electrons from charm and bottom
 - used distance of closest approach and Bayesian inference
 - bottom suppression is similar to charm at high p_{T} , but smaller than charm at low p_{T}
 - compare between data and energy loss models -> $D(2\pi T) \sim 6$, gluon density = 1000 \sim 3500
- <u>Future prospects</u>
 - high statistics data (~10 times) in 2014

Comparison between data and models

2016/8/9

Agreement with measured data

- Yields of D⁰ can be calculated
 by unfolding charm yields + PYTHIA
 Unfolding result agree with STAR D⁰ measurer
- Unfolding result agree with STAR D⁰ measurement
 > fit Levy function

$$f(p_T) = p_0 \left[1 - \frac{(1-p_1)p_T}{p_2} \right]^{1/(1-p_1)} \times \left[1.3\sqrt{2\pi p_4^2}G(p_T, p_3, p_4) + \frac{p_5}{1+e^{-p_T+3}} \right],$$

\checkmark DCA distribution

K.Nagashima

✓ Decay matrix

2016/8/9

K.Nagashima

✓ Bayesian Inference

[Bayes' theory] P(θ|x)=P(x|θ)P(θ)/P(x)

- $P(\theta | x)$: posterior probability
- P(x|θ): likelihood
- $P(\theta)$: prior probability
- P(x): normalization factor

✓ Dead-Cone effect

✓ Collisional energy loss

Brownian motion

- Langevin equation

$$\frac{d\vec{p}}{dt} = -\eta_D(p)\vec{p} + \vec{\xi}$$

- diffusion coefficient

$$D = \frac{T}{M\eta_D(0)} = \frac{2T^2}{k}$$

 η_D : coefficient of fraction, ξ : drift force

Markov Chain Monte Carlo

Markov Chain

- Markov process = present status depend on previous status only

Algorism

2016/8/9

- make a initial input (c/b invariant yields) with PYHIA
- calculate Log likelihood
- compare between present Log likelihood and previous log likelihood
 - present > previous -> employ present parameters

present < previous -> reject present parameters and employ previous parameters

✓ Diffusion constant

2016/8/9

K.Nagashima

26

K.Nagashima

✓ Energy loss model

K.Nagashima

Quark energy loss mechanism in QGP

+ collisional energy loss

- parton elastic scattering
- Brownian motion via Langevin equation $\frac{d\vec{p}}{dt} = -\eta_D(p)\vec{p} + \vec{\xi} \qquad \begin{array}{l} \eta_D: \text{ friction coefficient} \\ \xi: \text{ drift force} \end{array}$

+ radiative energy loss

- Bathe-Heitler for gluon radiation
- Landau-Pomeranchuk-Migdal effect
 - -> suppression of radiation in high density

$$dP_0 \approx \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{dk_{\perp}^2}{k_{\perp}^2} \times \frac{\lambda_{path}}{L_{form}}$$

- Dead-Cone effect

-> strong suppression of small-angle radiation

$$dP = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{k_{\perp}^2 dk_{\perp}^2}{(k_{\perp}^2 + \omega^2 \theta_0^2)^2} \qquad \theta_0 = \frac{M}{E}$$

mass ordering

$$\Delta E_g > \Delta E_{u,d,s} > (?) \Delta E_c > (?) \Delta E_b$$

