

Prospects for heavy flavour measurements with the ALICE inner tracker upgrade

MinJung Kweon Inha University

Reimei WorkShop "Physics of Heavy-Ion Collisions at J-PARC Tokai, August 8, 2016

OUTLINE

- Why Heavy-flavours in heavy-ion physics
- **Verview of available ALICE measurements; where we are**
- Heavy-ion program at LHC for Run2, Run3 and Run4
- ALICE upgrade strategy on heavy flavour sector
- Inner Tracking System upgrade design objectives
- Expected performance
- Summary

What's special about heavy quarks

- Heavy-ion (HI) collisions at LHC energies
 - QGP phase expected (lifetime ~ O(10 fm/c))
- Heavy quarks
 - ★ Large mass (m_q » Λ_{QCD}) → produced in the early stages of the HI collision with short formation time(t_{charm} ~ 1/m_c ~ 0.1 fm/c << τ_{QGP} ~ O(10 fm/c)), traverse the medium interacting with its constituents
 - Interactions with QGP don't change flavour identity
 - Cannot be destroyed/created in the medium
 - → transported through the full system evolution → natural probe of the hot medium created in HI interactions

Kinetic freeze-out Thitial energy density QGP phase Phase Phase Phase Phase Phase $\chi^{e^{+}}$ $\chi^$

Relativistic Heavy-Ion Collisions

Hard processes:

- Charm, Beauty, W, Z, photons, Jets
- Probe the whole evolution of the collision

final detected

particles distributio

Heavy quarks as medium probes

Parton Energy Loss by

$$\rightarrow$$
 medium-induced gluon radiation
 $E(\mathcal{E}_{medium}, \mathcal{C}_{R}, \mathcal{M}, \mathcal{L})$
 $\Delta E_{g} > \Delta E_{c} \mathcal{A} \mathcal{E}(\mathcal{E}_{md}\mathcal{E}_{m}; \mathcal{C}_{R}, \mathcal{M}, \mathcal{L})$
 $Prediction: \Delta E_{g} > \Delta E_{c} \mathcal{A} \mathcal{E}_{s} \mathcal{A} \mathcal{E}_{b}$
 $R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B} < \mathcal{R}_{AA}^{D}$
Might translate into a hierarchy of
nuclear modification factors
 $R_{AA}(p_{t}) = \frac{1}{\langle T_{AA} \rangle} \frac{R_{AA}^{\pi t} < R_{AA}^{t} < R_{AA}^{t} > R_{AA}^{D} < R_{AA}^{B}}{\mathcal{C}_{pp}^{t}/\mathcal{A} p_{t}^{t}}$

Collectivity in the QGP

Initial spatial asymmetry →
 azimuthal asymmetry of particle
 emission in momentum space

⇒ heavy quarks participate in collective expansion of the medium via sufficient re-scattering?

Heavy flavour measurements in ALICE

What we understood! Selective, representative results

- Open heavy flavor: excellent probes of the hot and dense medium
 - Heavy quarks take part in collective expansion
 - Still challenging to see expected hierarchy in energy losses
 - Distinguish between b/c energy losses is limited to high p_T
 - ✤ No access in Pb-Pb to charm (and beauty) baryons → baryon/meson ratio for light flavor only

- Open heavy flavor: excellent probes of the hot and dense medium
 - Heavy quarks take part in collective expansion
 - Still challenging to see expected hierarchy in energy losses
 - Distinguish between b/c energy losses is limited to high p_T
 - ✤ No access in Pb-Pb to charm (and beauty) baryons → baryon/meson ratio for light flavor only

- Open heavy flavor: excellent probes of the hot and dense medium
 - Heavy quarks take part in collective expansion
 - Still challenging to see expected hierarchy in energy losses
 - Distinguish between b/c energy losses is limited to high p_T
 - ✤ No access in Pb-Pb to charm (and beauty) baryons → baryon/meson ratio for light flavor only

- Open heavy flavor: excellent probes of the hot and dense medium
 - Heavy quarks take part in collective expansion
 - Still challenging to see expected hierarchy in energy losses
 - Distinguish between b/c energy losses is limited to high p_T
 - No access in Pb-Pb to charm (and beauty) baryons → baryon/meson ratio for light flavor only

Heavy-ion program at LHC extended to Run2, Run3 and Run4

- Run2: ~1 nb⁻¹ Pb-Pb at $\sqrt{s_{NN}}$ ~ 5.1 TeV, 1 p-Pb run
- LS2 (2018-2019)
 - Major ALICE and LHCb upgrades, important upgrades for ATLAS and CMS
 - ★ LHC collimator upgrades: target luminosity 6 x 10²⁷ cm⁻²s⁻¹ → 50 kHz interaction rate
- Run3 + Run4 ("HL-LHC", 2020-2028):
 - * Experiments request: >10 nb⁻¹ Pb-Pb (ALICE: 10 nb⁻¹ at 0.5T + 3 nb⁻¹ at 0.2T)
 - Pb high lumi, pp reference at 5.5 TeV, possibly light ions (e.g. Ar-Ar)

ALICE upgrade strategy: heavy flavour sector

- High precision measurements of rare probes at low p_T
 - D mesons: high-precision measurement down to zero pT
 - Exclusive reconstruction of the charm baryon Λ_c (cτ, only 60 µm)
 - Exclusive reconstruction of beauty mesons (B) and baryons (Λ_B)

- ➡ secondary vertices → improve inner tracker (improve spacial precision on track and vertex position)
- mostly "untirggerable" because of extremely low S/B
 - Trigger approach: write all events at up to 50 kHz in Pb-Pb (currently 0.5 kHz) ~1 TB/s HLT/DAQ ~10 GB/s

Upgrade of Inner Tracking System (ITS)

• The new ITS design goals:

- Improve vertex resolution
- High efficiency and p_T resolution
- Fast readout: 50 kHz (Pb-Pb), 400 kHz (pp)
- Fast insertion/removal

• The new ITS features:

	Current ITS	New ITS
Layers	6	7
Inner radius	3.9 cm	2.3 cm
Pipe radius	2.9 cm	1.9 cm
Innermost layer thickness	1.14% X ₀	0.3% X ₀
Innermost layer pixel cize	50x425 µm²	28x29 µm²
Max. Pb-Pb readout	1 kHz	100 kHz

MinJung Kweon, Inha University

Reimei WorkShop "Physics of Heavy-Ion Collisions at J-PARC"

- Pointing resolution x3 better in transverse plane (x6 along beam direc INFN
- Tracking efficiency x10 better at low p_T (~90% at p_T=0.1-0.2 GeV/c)

ITS pixel chip - Monolithic Active Pixel Sensors (MAPS)

- MAPS attractive technology for ALICE due to:
 - Reduction of material budget (sensor&readout integrated) 350 μm \rightarrow 50-100 μm /layer
 - Radiation tolerance and moderate read-out time fitting ALICE needs
- ALICE baseline: MAPS using CMOS 0.18 μm technology (TowerJazz)
- Pixel pitch ~ 30 μm x 30 μm

High-resistivity (1-8k Ω cm) p-type epitaxial layer (18µm - 40µm thick) on p-type substrate

```
Small n-well diode (2-3 \mum diameter), ~100 times smaller than pixel \rightarrow low capacitance
```

Application of (moderate) reverse bias voltage to substrate can be used to increase depletion zone around NWELL collection diode

Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area

MinJung Kweon, Inha University

ITS pixel chip - Monolithic Active Pixel Sensors (MAPS)

- MAPS attractive technology for ALICE due to:
 - Reduction of material budget (sensor&readout integrated) 350 μm \rightarrow 50-100 μm /layer
 - Radiation tolerance and moderate read-out time fitting ALICE needs
- ALICE baseline: MAPS using CMOS 0.18 μm technology (TowerJazz)
- Pixel pitch ~ 30 μm x 30 μm

```
Final version of MAPS chip (ALPIDE = ALICE Pixel Detector) due August 2016 (after 3 prototype runs) \rightarrow start production end of the year
```

Power consumption: <100 mW/cm² Efficiency > 99% Noise probability: < 10⁻⁶

```
Non-Ionizing Energy Loss: 1.7 \times 10^{13} 1 MeV n<sub>eq</sub> /cm<sup>2</sup> (*)
Total Ionizing Dose: 2.7 Mrad for IB, 100 krad for OB (*)
```


(*) 10 x radiation load integrated over approved programme (~ 6 years of operation)

In-pixel front-end circuitry of ALPIDE

Analog front-end and discriminator continuously active

- Non-linear and operating in weak inversion. Low C:Ultra-low power: 40 nW/pixel
- The front-end acts as analogue delay line
- Test pulse charge injection circuitry
- Global threshold for discrimination → binary pulse OUT_D
- Digital pixel circuitry with three hit storage registers (multi event buffer)
 - Global shutter (STROBE) latches the discriminated hits in next available register

Read out: The Priority Encoder sequentially provides the addresses of all hit pixels in a double column

MinJung Kweon, Inha University

2

Detector modules

From plots & drawings to pictures

MinJung Kweon, Inha University

Overview of available ALICE measurement

- Heavy-ion program at LHC for Run2, Ref
- ALICE upgrade strategy on heavy flavour sector
- Inner Tracking System upgrade design objectives
- Expected performance

All results with L_{int}=10 nb⁻¹

Summary

D⁰ as reference candle for charm

Background down by factor 5

 Systematics improvement due to easier signal extraction & "direct" feed-down correction

NOTE

- Dominant charm uncertainties at low p_T:
 - ♦ Statistical \rightarrow via larger readout rate
 - ◆ pp reference → via larger readout rate & a "short" pp run at Pb-Pb energy
 - Feed-down from B meson decays (now based on pQCD)
 - \rightarrow via measuring the prompt and non-prompt fractions

ALICE, CERN-LHCC-2013-024

Low-p_T beauty

MinJung Kweon, Inha University

Beauty and charm energy loss

INFN

ALICE, CERN-LHCC-2013-024

Move from "first clear indication of $\Delta E_c > \Delta E_b$ " to test quantitative description as a function of p_T

Heavy favour flow v_2

MinJung Kweon, Inha University

In-medium heavy flavour hadronization?

From LHC Run 1 data, hints that charm could recombine in the QGP

 D^0 and $D_s R_{AA}$

Summary of physics reach on heavy flavour sectors

	Curren	$t, 0.1 nb^{-1}$	Upgrade, $10 \mathrm{nb}^{-1}$	
Observable	p_{T}^{\min}	statistical	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical
	(GeV/c)	uncertainty	(GeV/c)	uncertainty
	Heavy Flav	70ur		
D meson R_{AA}	1	10%	0	0.3%
$D_s meson R_{AA}$	4	15%	< 2	3%
D meson from B R_{AA}	3	30%	2	1%
${ m J}/\psi$ from B $R_{ m AA}$	1.5	15% (p _T -int.)	1	5%
B^+ yield	not accessible		3	10%
$\Lambda_{ m c} R_{ m AA}$	not accessible		2	15%
$\Lambda_{\rm c}/{\rm D}^0$ ratio	not accessible		2	15%
$\Lambda_{\rm b}$ yield	not accessible		7	20%
D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%
$D_{\rm s} {\rm meson} v_2 (v_2 = 0.2)$	not accessible		< 2	8%
D from B v_2 ($v_2 = 0.05$)	not accessible		2	8%
J/ψ from B $v_2 \ (v_2 = 0.05)$	not accessible		1	60%
$\Lambda_{\rm c} \ v_2 \ (v_2 = 0.15)$	not accessible		3	20%

ALICE, CERN-LHCC-2013-024

Summary

- New ITS detectors will be installed during the Long Shutdown 2 and will be ready for the Run3 of LHC foreseen from 2020
- The installation of the new silicon pixel detector, ITS, will significantly extend the ALICE physics reach in the HF sector:
 - Improved precision for existing measurements down to p_T=0
 - New and unique measurements in both charm and beauty sectors

We are approaching to precision era in the "heavy flavor sector" as we've done for the "light sector" and also for the "strange sector"

Find much more in

MinJung Kweon, Inha University

Reimei WorkShop "Physics of Heavy-Ion Collisions at J-PARC"

Thank you for your attention!

Extra Slides

ALICE

Heavy-flavour Observables: measure decay products

	PHENIX	STAR	ALICE	ATLAS	CMS
HF electrons	\checkmark	\checkmark	\checkmark		
HF muons	\checkmark		\checkmark	\checkmark	
D ⁰ , D ⁺ , D ^{*+}		\checkmark	\checkmark		
D _s +			\checkmark		
B→J/ψ					\checkmark
B jets					\checkmark
B electrons			\checkmark		

Originally compiled by Z. Conesa dV and Andrea Dainese

For RHIC, different c.m.s energies and different collision species

	PHENIX	STAR	ALICE	ATLAS	CMS	LHCb
HF electrons	\checkmark		\checkmark			
HF muons	\checkmark		\checkmark	\checkmark		
D ⁰ , D ⁺ , D ^{*+}		\checkmark	\checkmark			
Ds ⁺			\checkmark			
B→J/ψ						\checkmark
B jets					\checkmark	
B electrons			\checkmark			
В					\checkmark	

Originally compiled by Z. Conesa dV and Andrea Dainese

Heavy lons at the LHC for Run1 (up to 2013)

year	system	√s _{NN} (TeV)	L _{int}
2010	Pb-Pb	2.76	~ 10 µb⁻¹
2011	рр	2.76	~ 250 nb⁻¹
2011	Pb-Pb	2.76	~ 150 µb⁻¹
2013	p-Pb	5.02	~ 30 nb⁻¹
2013	рр	2.76	~ 5 pb ⁻¹

Table by Andrea Dainese

- 2011 Pb-Pb run: 5x10²⁶ cm⁻²s⁻¹! already above nominal luminosity
- First, very successful, p-Pb run (with all four large experiments)
- Two short pp reference runs at √s of Pb-Pb

LHC / HL-LHC Plan

8th Annual Meeting of the Helmholtz, Feb. 2014, Susanne Kuehn

ALICE Upgrade for Run3 & Run4

ALICE Upgrade: Muon Forward Tracker

- 5 planes of silicon telescope
- Pixel chip: same as ITS upgrade project
- Track density
- Optimized for low-material thickness
- 0.6% X₀ per detection plane

ALICE Upgrade: Muon Forward Tracker

- Separate prompt J/ψ and J/ψ from B decays
- Improve ψ(2s) detection (S/B ²: systematics *1/3)
- Expected improvements also in Y mass region
- c/b separation down to p_T ~1 GeV/c (c,b without separation down to p_T > 2 GeV/c with current system)
- Low mass vector mesons accessible for $p_T > 1-2$ GeV/c

Heavy-flavour Program at LHC

• Complementary capabilities:

- High p_{T} , high rate, jets: CMS & ATLAS
- Low p_T coverage, low material budget, excellent PID: ALICE
- LHCb providing excellent results in pp & p-Pb
- Heavy Flavour: a central topic for upgrades of all Heavy-Ion experiments. Characterization of mass dependence of energy loss, HQ in-medium thermalization and hadronization, as a probe of the medium transport properties
 - Low-p_T production and elliptic flow of several HF hadron species (focus of ALICE)
 - More statistics and precision at LHC energy → constrain energy loss (collisional vs. radiative) and hadronization (coalescence vs fragmentation) mechanisms
 - B and b-jets (focus of ATLAS and CMS)
 - Mass dependence of high p_T parton energy loss

Run2 Goal at LHC

ALICE

- Measure heavy-flavour production cross sections, R_{AA}, v₂, I_{AA} at higher energy with improved precision and extended p_T reach (both at low & high p_T)
 - Many observables limited by statistics in Run-I
 - Some uncertainties can be reduced with larger statistics
- New observables:
 - v₂ of beauty-decay electrons, and HF v₃?
 - Other heavy-flavour hadrons (baryons?)
 - Beauty via 3-muon events
 - Heavy-flavour jets (b-tagged, with an electron, with a D meson) extended HF correlations (HFe-jet, HF-HF)
 2011 2.76 TeV PbPb data (0.15/nb)
 (Artist's impression)

b-jet 2013 5.02 TeV pPb data (35/nb) **CMS** B meson Extended p_T reach b-jet Extended pT reach for b-jet & B mesons 2015-17 5.1 TeV PbPb data (1.5/nb) D^(*) meson • New observables: B meson b-jet pT asymmetry b-jet D meson and charm jet cross section 10 10^{2} p_T (GeV) HL-LHC (10/nb): (b)-jet quenching at O(TeV) ECT, Mar. 2015, Y.J. Lee ttbar production

Run3 & Run4 Focus on ALICE

- Main observables:
 - Low-p_T heavy flavour
 - 💠 Low-pT charmonia
 - (Very) low-p_T and low-mass di-leptons
- Exploit detector specificities (strengthened with the upgrades):
 - Hadron and lepton ID
 - Light-weight and precise tracker
 - Low magnetic field
- Mostly "untriggerable" because of extremely low S/B
- Trigger approach: write all events at up to 50 kHz in Pb-Pb (currently 0.5 kHz) ~1 TB/s HLT/DAQ ~10 GB/s
- HL-LHC: increase of minimum-bias sample x100 wrt Run 2

Compiled by Andrea Dainese

Run3 & Run4 Focus on CMS & ATLAS

- Main observables:
 - Differential studies of jets at very high-pT
 - 📌 b-jets
 - Multi-differential studies of Y states
- Exploit detector specificities (strengthened with the upgrades):
 - 📌 muon ID
 - Precise tracker
 - Calorimetry
- Mostly based on muon, jet, displaced track triggers
- Trigger/DAQ approach: strong data reduction (currently 0.5 kHz) 50 kHz, L1: ~ few kHz, HLT: ~ 100 Hz
- HL-LHC: increase of sample x10 wrt Run 2

Compiled by Andrea Dainese

• ATLAS

- Additional pixel layer (LS1), then new tracker (LS3): tracking and b-tag
- Fast tracking trigger (LS2): high-multiplicity tracking
- Calorimeter and muon upgrades (LS2): electron, γ, muon triggers

• CMS

- Upgrade of trigger and DAQ, L1 calorimeter trigger (LS1): enables L1 rejection at 95%, e.g. (after LS2) from 50 kHz to <3 kHz (HLT input)</p>
- New pixel tracker (YES15-16), then new tracker (LS3): tracking and b- tag
- Extension of forward muon system (LS2): muon acceptance
- Upgrade forward calorimeter (LS3): forward jets in HI
- LHCb (LS2)
 - New trackers (pixel, strip, scintillating fiber)
 - ✤ Readout upgrade: up 40 MHz in pp → exploit full p-Pb luminosity

In-medium Heavy Flavour Hadronization?

From LHC Run 1 data, hints that charm could recombine in the QGP
 Precise measurements of HF mesons (non-strange and strange) and baryons
 Precise measurements of their v₂

Heavy Favour Elliptic Flow v₂

- Heavy quark flow sensitive to
 - At low p_T: degree of thermalization of massive quarks in the medium
 - At high p_T: path-length dependence of energy loss
- Models predict

Large v₂ for charm and significant mass effect in charm vs. beauty

J. Aichelin et al., arXiv:1201.4192

CMS Upgrade: New CMS pixel tracker

- To be installed during 2015-16 year-end technical stop
 - Reduced material budget
 - Improved IP resolution
- Will have strong impact, also in Pb-Pt
 - 💠 Non-prompt J/ψ
 - b-tagged jets
 - Full reconstruction of HF decays

Reimei WorkShop "Physics of Heavy-Ion Collisions at J-PARC"

03

-2

-1

3 eta

2

1

PHENIX VTX Upgrade (2011)

STRA: Heavy Flavour Tracker (2014+)

- HFT = SSD (strip) + IST (pad) + PiXeL(MAPS)
 - Monotholic Active Pixel Sensor (MAPS) technology
 - Ultimate hit resolution (20.7x20.7 µm²)
 - Thin material design (0.4%X₀) and air cooled critical to reach low p_T
- Taking data since 2014:
 - Significant Au+Au, p+p and p+Au datasets have been collected with HFT

Detector	Radius	Hit Resolution $P(x, Z(x, m))$	Radiation
	(CIII)	R/φ - Ζ (μ Π)	length
SSD	22	20 / 740	1% X ₀
IST	14	170 / 1800	<1.5 %X ₀
	8	12 / 12	~0.6 %X ₀
PAL	2.9	12 / 12	~0.4% X ₀

Zhenyu Ye, ECT 2015 March, 2015

Color charge dependence?: D-meson R_{AA} vs. π[±]

ALICE O² project: Upgrade of the ALICE Online & Offline Computing

- 50k collisions per second, each ~20 MByte \rightarrow ~1.1 TByte/s data input
- Detectors in continuous & triggered read-out mode
- Data reduction by on-line reconstruction and compression
- Storage of only reconstruction results, discard raw data
- Combined DAQ/HLT/off-line farm (O2)
- Subsequent reconstruction passes for physics on farm

Detectors	Input to On-line System (GBytes/s)	Peak Output to Computing Center (GByte/s)	Avg. Output to Computing Center (GByte/s)
TPC	1000	50	8
TRD	81.5	10	1.6
ITS	40	10	1.6
Others	25	12.5	2
Total	1146.5	82.5	13.2

MinJung Kweon, Inha University

Reimei WorkShop "Physics of Heavy-Ion Collisions at J-PARC"

- D mesons and Lc in hadronic decays
 - extension of cross section / yield measurements to higher and lower pT (down to pT = 0 for the D0 meson) with improved precision in all systems
 - constrain energy-loss models at high pT
 - address radial flow / recombination effects in Pb-Pb at low pT
 - measurement of total charm production cross section
 - extension of v2 measurements with improved precision
 - path-length dependence of energy loss at high pT
 - collectivity/thermalization at low pT
 - improved precision on rare hadrons (Ds+, Lc)
 - first look at heavy-flavor v3
 - D mesons in very high multiplicity pp collisions -> MPI at hard scale
- heavy-flavor decay electrons
 - extended RAA and v2 measurements for HF decay electrons
 - beauty-decay electrons (via impact parameter measurement)
 - RAA and v2 to address beauty quark energy loss and collectivity
 - beauty decays using (incomplete) displaced vertices including an electron

Specifications

Pixel Silicon Detector at LHC/RHIC experiments

	ATLAS	CMS	ALICE	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (µm ²)	50x400	100x150	50x425	50x425	20x20
Radius of first layer (cm)	5.1	4.4	3.9	2.5	2.8
Thickness of first layer	~1%X ₀	~1%X ₀	1%X ₀	1%X ₀	0.4%X ₀

* physics results from PHENIX/STAR discussed here don't include data from silicon pixel detectors

Hard Probes 2015, Montreal X. Dong

RHIC: BNL proposed schedule

Thu After the 12016 run, the BNL plan has PHENIX being removed.

In 2021 it will have been replaced by sPHENIX, a compact solenoidal detector that is optimized for **jet** and **Upsilon** measurements.

 sPHENIX will provide (unbiased) jet and Upsilon data that will complement the very precise data available from LHC by the end of Run 3 (~2023).

Anthony D Frawley, ECT 2015 March, 2015

Pixel detector technologies

Several technologies have been considered

Hybrid pixel detectors

• Edgeless sensors (100 μ m) + front-end chip (50 μ m) in 130 nm CMOS

Monolithic pixel detectors

- MIMOSA like in 180 nm CMOS
- INMAPS in 180 nm CMOS
- LePix in 90nm CMOS

MISTRAL prototype circuit (IPHC)

LePIX prototype circuit (CERN)

HYBRID (CERN)

INMAPS (RAL)

TPAC prototype 50 μm pixel - over 150 CMOS transistors

MinJung Kweon, Inha University

Tower/Jazz

IBM

CMOS Pixel Sensor using TowerJazz 0.18µm CMOS Imaging Process

Tower Jazz 0.18 μm CMOS

- feature size 180 nm
- metal layers 6
- → Suited for high-density, low-power
- Gate oxide 3nm
- → Circuit rad-tolerant
- High-resistivity (> $1k\Omega$ cm) p-type epitaxial layer (20μ m 40μ m thick) on p-type substrate
- Small n-well diode (2-3 μ m diameter), ~100 times smaller than pixel => low capacitance
- Application of (moderate) reverse bias voltage to substrate can be used to increase depletion zone around NWELL collection diode
- Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area

Matrix Readout

The Priority Encoder sequentially provides the addresses of all hit pixels in a double column

Combinatorial digital circuit steered by peripheral sequential circuits during readout of a frame

No free running clock over matrix. No activity if there are no hits

Energy per hit: $E_h \approx 100 \text{ pJ} \rightarrow 3 \text{ mW}$ for nominal occupancy and readout rate

Buffering and distribution of global signals (STROBE, MEMSEL, PIXEL RESET)