Initial state fluctuations from SPS to LHC

J. Milošević University of Belgrade and Vinča Institute of Nuclear Sciences, Belgrade, Serbia

08.08.2016

Reimei 2016, Tokai, Japan

Outline

- Azimuthal anisotropy
- ♦ conventional methods
- ♦ Initial-state fluctuations (ISF) and higher order Fourier harmonics
- Triangular flow at SPS, RHIC and LHC energies
- Collectivity over a wide p_T range in PbPb collisions
- Collectivity in small pPb and smallest pp collision systems
- ♦ ISF on sub-nucleonic level
- Factorization breaking mechanism
 - $-p_T$ dependent event plane
 - $-\eta$ dependent event plane
- Principal Component Analysis (PCA) method
- PCA method in flow physics leading and sub-leading flow modes
- The PCA analysis in pPb and PbPb collisions at the LHC energy
- Conclusions

Anisotropy harmonics v_n – conventional methods

Role of initial state fluctuations (ISF) on anisotropy

Anisotropy harmonics with order higher than 2

geometry –

Phys.Rev. C89 (2014) 044906 (arXiv:1310.8651) 3

 v_2 , v_3 , v_4 , v_5 and v_6 using multiple methods

Simple, circle-like geometry does not describe the formed system precisely enough

Ultra-central collisions

Asymmetric (pPb) high--multiplicity collisions

Phys.Lett. B724 (2013) 21. (arXiv:1305.0609)

Triangular flow – one of higher order Fourier harmonics

The triangular initial shape \rightarrow triangular hydrodynamic flow

B. Alver and G. Roland PRC 81(2010) 054905

Triangular flow in PbAu at the top SPS energy

$v_3 v_5 p_T$ – comparison to other experiments

- ✤ First p_T dependent measurement of the triangular flow at the top SPS energy
- Top RHIC and LHC energy gives very similar v₃ magnitudes
- The v_3 at the top SPS energy is about half of those at top RHIC and LHC
- Linear increase but with different slopes

Energy dependence

- RHIC 19.6 GeV is guite close to the top SPS energy of 17.3 GeV *
- Comparison is done at very similar centralities ($\langle \sigma / \sigma_{qeo} \rangle \approx 5\%$) *
- A rather good agreement with an AMPT prediction for the ratio of about 0.6 at 19.6 GeV RHIC energy

v_3 in comparison with v_2

- Elliptic flow reflects the initial anisotropy and thus depends strongly on centrality
- Triangular flow comes from the ISF and weakly depends on centrality
- ↔ The different centrality behavior between v_2 and v_3
- ↔ For very central collisions ($\langle \sigma / \sigma_{geo} \rangle = 2.4\%$), v₃ becomes close to the v₂

 Triangular flow is dominant anisotropy for ultra-central collisions at the LHC energies

Comparision with hydro+UrQMD predictions

- Relativistic hydrodynamics + transport models (hybrid models)
- VHLLE viscous hydrosolver + UrQMD hadron cascade (I. Karpenko, P. Huovinen, H. Petersen and M. Bleicher PRC 91 (2015) 064901)
- ↔ The model predictions for hadrons within 0.2 < p_T <2.0 GeV/c and -1 < η < 1
- Cerentrality samples roughly correspond to the experimental ones

Collectivity over a wide p_T range in PbPb

v_n {SP} over a wide p_T range

- ♦ low- p_T hydrodynamic flow (v_2 geometry, v_3 ISF on nucleonic level)
- v₂ non-zero up to very high p_T
- ✤ high-p_T may reflect the path-length dependence of parton energy loss
- \diamond v₂ is complementary to R_{AA} measurements
- v₃ mainly consistent with zero at high-p_T

Collectivity over a wide p_T range

Iow-p_T - ratio v₂{2k}/v₂{SP} ≈ 0.8 and v₂{4} ≈ v₂{6} ≈ v₂{8} ← hydrodynamics
 high-p_T - SP and multi-particle correlation tend to converge to the same value
 v₂{4} ≈ v₂{6} ≈ v₂{8} ≠ 0 ← collectivity (likely to be related to jet quenching)

CMS PAS HIN-15-014

Comparison with lower energy and CUJET3

A slight increase of v₂ wrt results (EP method) from 2.76 TeV collision energy
 CUJET3 predictions roughly compatible with the data at high-p_T (over 40 GeV/c)

• At lower p_T , CUJET3 overpredicts the experimental v_2

Collectivity over a wide p_T and centrality range

Soft and hard correlation

- Correlation between low- $p_T v_2$ and high- $p_T v_2$ over a wide centrality range
- Each point represents one centrality bin
- Strong correlation may indicate that low-p_T v₂ and high-p_T v₂ may have the same origin
- Within uncertainties, slopes between v₂{SP} and v₂{2k} are compatible
- Extrapolations compatible to 0 within uncertainties

Collectivity in small pPb and smallest pp systems?

The ridge seen in all colliding systems at LHC

Does the ridge in *pp* and *pPb* collisions originate from hydrodynamics flow like in PbPb collisions or it is connected with color-glass condensate (CGC)

v₂{2} and v₃{2} in pp at different collision energies

- There is no or a very weak energy dependence of v₂ in pp collisions
- v₂{2} in pp collisions shows a similar pattern as the one seen in pPb collisions (gets flat at the highest multiplicities)
- The v₂{2} magnitude is ordered: it is highest in PbPb, gets smaller in pPb and become smallest in pp collisions
- In difference of the v₂, the v₃ magnitude is comparable to those in pPb and PbPb collisions
- At low multiplicities, the systematic uncertainties are large for all the three systems
- At high multiplicities, v₃ in pp increases at a slower rate than in pPb and PbPb systems

c₂{4} and c₂{6} in pp at different collision energies

- Multi-particle correlations are used to reduce jet correlations from the away side and to explore collective nature of the long-range correlations in pp. v₂{4} and v₂{6} are extracted
- Clear negative $c_2{4}$ at high <u>multiplicities</u> in pp at 13 TeV is seen $v_n{4} = \sqrt[4]{-c_n{4}}$
- ★ and positive c₂{6} $v_n{6} = \sqrt[6]{\frac{1}{4}c_n{6}}$
- Statistical limitations

CMS PAS HIN-16-010

v₂ in pp compared to pPb and PbPb results

- Elliptic flow in pp measured using 2- and multi-particle correlations compared to pPb and PbPb results
- ♦ $v_2{2}/v_2{4}(pp) \le v_2{2}/v_2{4}(pPb)$ ← related to initial-state (IS) fluctuations
- Smaller v₂{2}/v₂{4} ← less IS fluctuating sources (PRL **112** (2014) 082301)

2D 2-particle corr. function in low- and high-multiplicity pp

CMS PAS HIN-16-010

- * charged-charged or charged-strange (K_S⁰ and $\Lambda/\overline{\Lambda}$) particles
- particles are correlated within given multiplicity bin
- ★ The ridge, at Δφ ≈ 0 and elongated at Δη, is seen only in high-multiplicity pp events
- The ridge is present not only for charged, but also for strange particles
- What is the origin of the ridge in the smallest pp system?

collective behavior in pp?

NCQ scaled v₂ in pp collisions compared to pPb and PbPb

Significant magnitude of the NCQ scaled v_2 in *pp*, comparable to the ones seen in pPb and PbPb collisions 08.08.2016

Reimei 2016, Tokai, Japan

Factorization breaking – p_T dependent event plane fluctuations

Initial-state inhomogeneity

♦ The goal is to map initial-state and its fluctuations in 3D

- Local hotspots perturb the EP of a smooth medium, so Ψ_n(p_T) contains information about initial-state fluctuations Phys.Rev.C 92 (2015) 034911
- Within hydrodynamics, initial-state fluctuations could appear as (sub-leading) flows

Factorization breaking

• How to connect $v_n(p_T)$ and $V_{n\Delta}(p_T)$?

↔ Usual assumption that EP angle Ψ_n does not depend on p_T leads to factorization

$$V_{n\Delta}(p_{T1}, p_{T2}) = \sqrt{V_{n\Delta}(p_{T1}, p_{T1})} \times \sqrt{V_{n\Delta}(p_{T2}, p_{T2})} = v_n(p_{T1}) \times v_n(p_{T2})$$

Solution \bullet Gardim et al., PRC 87 (2013) 031901 and Heinz et al., PRC 87 (2013) 034913 proposed that not only v_n depends on p_T , but also Ψ_n could depends on p_T due to event-by-event (EbE) fluctuating initial state

✤ then:

$$\begin{split} V_{n\Delta}(p_{T1},p_{T2}) = \left\langle v_n(p_{T1})v_n(p_{T2})\cos\left[n(\Psi_n(p_{T1})-\Psi_n(p_{T2}))\right] \right\rangle \\ \neq \sqrt{V_{n\Delta}(p_{T1},p_{T1})} \times \sqrt{V_{n\Delta}(p_{T2},p_{T2})} \end{split}$$

even if hydro flow is the only source of the correlation

initial state fluctuations $\rightarrow \Psi_n(p_T) \rightarrow$ factorization breaking

$\begin{aligned} \textbf{Factorization breaking} \\ \textbf{ } \bullet \text{ new observable: } r_n &= \frac{V_{n\Delta}(p_T^{trig}, p_T^{assoc})}{\sqrt{V_{n\Delta}(p_T^{trig}, p_T^{trig})}\sqrt{V_{n\Delta}(p_T^{assoc}, p_T^{assoc})}} = \\ \frac{\left\langle v_n(p_T^{trig})v_n(p_T^{assoc})\cos\left[n(\Psi_n(p_T^{trig}) - \Psi_n(p_T^{assoc}))\right]\right\rangle}{\sqrt{v_n^2(p_T^{trig})v_n^2(p_T^{assoc})}} = \begin{cases} 1 \\ <1 \\ >1 \end{cases} & \text{fact. holds fact. breaks non-flow} \end{aligned}$

★ Large effect is expected and confirmed in ultra central PbPb collisions **CMS collaboration**: Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, JHEP **1402** (2014) 088

✤ As in pPb collisions initial-state fluctuations play a dominant role could we expect a similar (in size) effect?

Two hydro models with different initial conditions and η/s were developed:
 Heinz-Shen VISH2+1: PRC 87 (2013) 034913
 Kozlov et. al.: arXiv:1405.3976

• Constraining of initial conditions and η /s by comparing to the exp. data?

PbPb case

The effect increases with rise of p_{τ}^{trig} and $p_{T}^{trig}-p_{T}^{assoc}$ Approaching the central collisions, the effect dramatically increases achieving value over 20% For semi-central collisions, the effect achieves only a size of

Reimei 2016, Tokai, Japan

r_n multiplicity dependence at the highest Δp_T

Dramatic increase at ultracentral PbPb. For small centralities (>5%) \approx few % The r_2 in pPb is a bit smaller than in PbPb Strong r_3 multiplicity dependence in pPb, but very weak in PbPb A non-flow effect in pPb for the highest p_{τ}^{trig} in lower multiplicities VISH2+1 qualitatively describes CMS data Kozlov et al. hydro model describes pPb. Gives stronger effect for PbPb and fails for r_3 at lower multiplicity

Factorization breaking – η dependence $f(p_T,\phi,\eta) \sim 1 + 2\sum v_n(p_T,\eta) \cos \left[n \left(\phi - \Psi_n(p_T,\eta) \right) \right]$ n=1Ψ_n $\Psi_n(\eta^b)$ n Bozek et al., arXiv: 1011.3354 **Global twist**

x[a]

Dumitru et al., arXiv: 1108.4764

η -dependent r_n using Hadronic Forward (HF)

η -dependent r_n in pPb

- A significant factorization breakdown in η found in pPb collisions with increase of η^a
- The effect increases approximately linearly with η^a
- Parameterization with F_n^{η} is purely empirical introduced just to quantify behavior of the data

$$r_n(\eta^a,\eta^b) \approx e^{-2F_n^\eta\eta^a}$$

arXiv: 1503.01692 PRC 92 (2015) 034911

η -dependent r_n vs multiplicity

- The *F*₂^η has a minimum around midcentral
 PbPb and increases for peripheral and most central collisions
 At similar multiplicity,
- F_2^{η} in pPb larger than the one in PbPb
- Except for the most central PbPb, there is a very weak centrality dependence of F₃ⁿ
- In PbPb, higher-orders F_3^{η} and F_4^{η} , show much stronger factorization breaking than for the second order

Principal Component Analysis as a new tool to study flow

Principal Component Analysis (PCA) method

A simple 2D example

 Random data generated by 2D multivariate Gauss distribution

$$\vec{X}_n = (x_1, x_2, \dots, x_n)$$

$$\vec{Y}_n = (y_1, y_2, \dots, y_n)$$

✤ a matrix

$$\Sigma = \begin{bmatrix} \operatorname{var}(X) & \operatorname{cov}(X,Y) \\ \operatorname{cov}(X,Y) & \operatorname{var}(Y) \end{bmatrix}$$

eigenvectors *e_i* and eigenvalues λ_i by diagonalization Σ

$$\left[e\right]^{T} \Sigma \left[e\right] = diag(\lambda_{1}, \lambda_{2})$$

- First Principal Component: eigenvector e_1 points to maximum variance of data cloud. Its magnitude is $\sqrt{\lambda_1}e_1$
- Second Principal Component: eigenvector e_2 points to the next maximum variance of data cloud. Its magnitude is $\sqrt{\lambda_2}e_2$

PCA method in hydrodynamic flow - prescription

Two very recent theoretical papers: R.S.Bhalerao, J-Y. Ollitrault, S.Pal and D.Teaney, Phys.Rev.Lett. 114 (2015) 152301 and A.Mazeliauskas and D.Teaney, Phys.Rev. C91 (2015) 044902 introduced the PCA as a new method to study hydrodynamics flows

* "The simplest correlations are pairs. The principal component analysis is a method which extracts all the information from pair correlations in a way which facilitates comparison between theory and experiment." J.-Y. Ollitrault

In this analysis:

- ♦ 7 p_T bins (0.3< p_T <3.0 GeV/c); the eigenvalue problem of a matrix $[V_{n\Delta}(p_i, p_j)]$

PCA method in hydrodynamic flow - prescription

• The new introduced p_T dependent variable, flow mode, is defined as $V_n^{(\alpha)}(p_i) = \sqrt{\lambda^{(\alpha)}} e^{(\alpha)}(p_i)$ where $\alpha = 1, ..., 7$

• corresponding single-particle flow mode $v_n^{(\alpha)}(p) = \frac{V_n^{(\alpha)}(p)}{\langle M(p) \rangle}$

- experimental data $\rightarrow V_{n\Delta}(p_i, p_j) \rightarrow it$ has its own statistical error $\Delta V_{n\Delta}(p_i, p_j)$
- ↔ The error propagation through $V_n^{(\alpha)}$ up to $v_n^{(\alpha)}$

Results – elliptic flows in pPb collisions

- The leading flow mode, $\alpha = 1$, practically identical to the v_2 measured using two-particle correlations
- The sub-leading flow mode, α =2, is essentially equal to zero at small p_{τ} and increases up to 4-5% going to the high- p_{τ}

CMS PAS HIN-15-010

- The first experimental measurement of the elliptic sub-leading flow **
- Systematical uncertainties small or comparable to statistical ones only at high- p_{T}

Results – elliptic flows in PbPb collisions

- The leading flow mode, α=1, essentially equal to the v₂ measured by ALICE using two-particle correlations
- ✤ The sub-leading flow mode, $\alpha=2$, is positive at UCC and for collisions with centralities above 20%
- ✤ In the region 0-20% centrality comparable with zero
- Similar behavior wrt the *r*₂ results (10.1103/PhysRevC.92.034911, *arXiv: 1503.01692*)

Results – triangular flows in pPb collisions

The first experimental measurement of the triangular sub-leading flow

Results – triangular flows in PbPb collisions

- Again, the leading flow mode, α=1, essentially equal to the v₃ measured by ALICE using two-particle correlations
- ↔ The sub-leading flow mode, $\alpha = 2$, is, within the uncertainties, equal to zero
- Results have a similar centrality dependence to that observed for r₃ (Phys. Rev C 92 (2015) 034911, arXiv: 1503.01692)

Conclusions

- The first v₃(p_T) measurement at the top SPS energy with CERES using the event plane method
- The v₂ and v₃ measured up to 100 GeV/c in PbPb at 5 TeV
- The v₂ and v₃ in small pPb and smallest pp system formed in collisions at the LHC energies
- A strong factorization breaking effect for n=2 appears approaching UCC PbPb collisions
- The sub-leading flow modes are for the first time experimentally measured in both pPb and PbPb collisions at the LHC energies
- The sub-leading elliptic flow modes is in a qualitative agreement with the r_2 factorization-breaking results
- The sub-leading triangular flow modes in both collision system is small if not zero showing that the triangular flow factorizes much better than the elliptic flow
- These results could help in better understanding of the initial-state fluctuations

Backup slides

r_2 in ultra-central PbPb collisions and VISH2+1

• The effect increases with rise of p_T^{trig} and p_T^{trig} - p_T^{assoc}

The biggest effect seen in ultra-central collisions while for semi-central collisions, the effect achieves only a size of 2–3%

The VISH2+1 model qualitatively gives a good description of CMS data for both MC-Glauber and MC-KLN initial conditions

♦ Large insensitivity to η /s → an independent constraint to the initial-state

r_2 from high-multiplicity pPb collisions

pPb r_2 : comparison to Kozlov et. al hydro model

r_3 from high-multiplicity pPb collisions

pPb r_3 : comparison to Kozlov et. al hydro model

η -dependent r_n in PbPb

- The r_2 factorization
- breaking effect
 increases with
 increase of η^a
- Except for the most central collisions, the increase is approximately linear

arXiv: 1503.01692 PRC 92 (2015) 034911

- The effect of factorization breaking is much stronger for higher-order harmonic r₃ – opposite to the p_T dependence
- Almost linear increase of the effect size
- Parameterization:

$$r_n(\eta^a,\eta^b) \approx e^{-2F_n^\eta\eta^a}$$

Factorization breaking - connection to the PCA

Factorization breaking - connection to the PCA

- ✤ The given harmonic order *n* has also higher (α >2) eigenmodes ordered from largest to smallest, while in *r_n* they are not clearly distinguished
- ✤ The PCA can approximately reconstruct two-particle $V_{n \Delta}(p_i, p_j)$ coefficients

$$V_{n\Delta}(p_i, p_j) \approx \sum_{\alpha=1}^{k \le N_b} V_n^{(\alpha)*}(p_i) V_n^{(\alpha)*}(p_j) \quad \text{where } N_b = 7$$

which can be used to calculate the factorization breaking ratio r_n

- So, the PCA is a good tool for analysis in hydrodynamics with fluctuations in the initial state
- Note that the PCA uses the whole p_T range simultaneously to extract the information on both leading and sub-leading flow modes

