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How the matter created by QCD

QC

Fina

D Is the "theory” to describe strong interaction

goal I1s to understand strong interacting matter

quark/hadron/nuclei to high density nuclear matter

quark hadron nuclel high-densi tter

However, even the first step

how hadron created from quarks is not clear yet.




Questions need to be answered

- How hadrons are formed from quarks

What is the effective
hadron®

DoF to describe

-How the property of the hadron are
changing when the environmental
condition Is changed, such as high

density?
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Hadron In nuclear media

quark condensates < qq >
will change as a function of T/
< qq >= 0 will be realize
at high T and p
(restoration of chiral symm.)

- relation exist between < gg > and Hadron mass,
for example, Gell-Mann-Oakes-Renner relation
Sy g =
0 e e O icats:




Hadron In nuclear media

quark condensates < qq >
will change as a function of T/
< qq >= 0 will be realize
at high T and p
(restoration of chiral symm.)

- relation exist between < gg > and Hadron mass,
for example, Gell-Mann-Oakes-Renner relation
Oy e
0 e e O icats:
Meson property will change under
the extremely condition




The property of the hadron in nucleus

- Meson In nucleus will be a good probe to
investigate QCD vacuum structure,
cf<qi>,@ p#0

- different meson will probe different
condensation parameters

s L g e

K . —(mg + ms) < gq+ 55 >= i
Ruilichtorlieaas g aana D
@ (ss) : Wi < BS ST

D (light-heavy): mqg <dqg>, + -+




One example:

Kaon(K) In nucleus

. K and N interaction is strongly attractive
( A(1405) play the leading role in KN Interaction)
It attraction is strong enough, Kaonic nucleus
(R nucleus bound state) will be cleated

Y.Akaishi & T.Yamazaki, PLB535, 70(2002).




Why Kaonic nucleus

- why Kaonic nucleus is interesting/important?
High density nuclear matter could be produced

due to strong attraction between K and nucleon

Density (fm=3)

A. Doté et al./ Physics Letters B 590 (2004) 51-56
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One example:

Kaon(K) In nucleus

- Since long time,

theoretical investigation
zlgle
experiments to search
for the Kaonic nucleus,
( simplest one will be
S=-1 dibaryon or KNN )

are performed.
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One example:

Kaon(K) In nucleus

Since long time,
theoretical investigation Experiment
.
experiments to search
for the Kaonic nucleus,
( simplest one will be
S=-1 dibaryon or KNN )
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Recently , new very important results are reported
from J-PARC




K-pp(or S=-1 dibaryon)?
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® “K'pp”-like structure in Z%

decay mode:
— Mass Relativistic Breit-Wigner

Y. Ichikawa et al., PTEP (2015) 021D01
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— Binding energy
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K-pp(or S=-1 dibaryon)?
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® “K'pp”-like structure in Z%

decay mode:
— Mass Relativistic Breit-Wigner

Y. Ichikawa et al., PTEP (2015) 021D01
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Theoretical interpretation

and new data

- Sekihara, Oset, Ramos, arXiv:1607.02058
- Two peak structures near the KNN threshold are

predicted
KParNN quasi-elastic
bound-state kaon scattering
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Theoretical interpretation

and new data
- Sekihara, Oset, Ramos, arXiv:160/7.02058
- Two peak structures near the KNN threshold are
predicted New high statistics

KbarNN quasi-elastic data from E15

bound-state kaon scattering
Sekihara, Qset, Ramos, RNNAA)

arXiv:1607.02058 KN ®)
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Meson In nucleus

. K nucleus will be studied insensibly at J-PARC
( for example search for the bound state
other than KNN )

- It will be very interesting, it we will be able to
produce “double K in nucleus”.
It may be possible, via (K-,K+) reaction or
Pstop 0N 3He ( pstop +3He — K+K+ K-K-pn )
But, it will be difficult due to huge background
- HI collision will be good place to search such

exotic state, even though huge background is
expected.




Meson In nucleus

- K nucleus will be studied insensibly at J-PARC
Llion example search for the bound state

-nwWhat will be

ltrr

e NEext?

But, it wii ve driicuit uue L riuge vdackyround

- HI collision will be good place to search such
exotic state, even though huge background is
expected.




Lesson from
resent progress on
hadron physics




Recent discoveries

- Many tetra/penta-quark candidates are
discovered at collider experiments such as
Belle/LHCDb, etc.




Recent discoveries

- Many tetra/penta-quark candidates are
discovered at collider experiments such as
Belle/LHCDb, etc.

1000 1200 1400
Mzt dly) - M(Jly) [MeV]




X(3872)

* discovered inB*=>K*nt*rJ/Y decay
 Known decay mode: X(3872) -»n'r)/y
« JPC=1* (recently determained)
* Now X(3872) is understood as mixture of
L CC
il D*Oﬁ
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Z7+(4430)

 discovered in B decay.

 known Decay mode : Z+ —> Y m+
the state must contained CC, but with charge!

— minimum quark content might be ccdu
* Genuine tetra quark?
- qq + (@qq  (di-quark and anti di-quark)
» DD molecule ?

- mixture of above states ‘
d
Eﬁ or/and 9

Structure of the Z resonance is not clear yet
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Recent discoveries

- Many tetra/penta-quark candidates are

discovered at collider experiments such as

Belle/LHCDb, etc.
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charm quark will play
Important roles
to understand hadron
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to understand hadron

D meson in nuclear media”




D meson In nucleus
- Unigueness tfor D meson

- Modification iIs magnified largely due to mass
of charm quark ( mg < qq >,)

- different interaction pattern for D(eq), D(cq)
only D(gq) may suffering the effect of "Pauli
Blocking”

— Interaction for D(eq), D(cg) could be
very different




D meson In nucleus

- Unigueness tfor D meson

- Modification iIs magnified largely due to mass
of charm quark ( mg < qq >,)

- different interaction pattern for D(eq), D(cq)
only D(gq) may suffering the effect of "Pauli
Blocking”

— Interaction for D(eq), D(cg) could be
very different

mass separation between
D, D In nuclear media

IS expected

vacuums IN medium
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How to produce
D mesons at J-PARC?




How to produce
D mesons at J-PARC?

nigh momentum
high Iintensity
antiproton beam




How to produce
One of the
Physics program
at K10

antiproton beam




Extension of J-PARC Hadron Facility

o 105m

| M K10

T2 target T3 target

|
|  HD-hall is extended by 105m.
H. Takahashi (KEK) » Two more production targets




Extension of J-PARC Hadron Facility
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Oue,

L VA N K10
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|
|  HD-hall is extended by 105m.
H. Takahashi (KEK) e Two more production targets




Intensity — ES option

Primary proton beam power: 50kW
Production target: 50% loss

Spill cycle: 5.52sec
Slit conditions are varied to achieve moderate purity for each case.

acceptance intensity
[msr-%] [/spill]

4GeV/c K- 0.33 1.7E6
4GeV/c pbar 1.2 1.6E7
6GeV/c pbar 0.55 7.8E6

2 decay p and cloud & are not included.

H. Takahashi(KEK)
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charmed meson In nuclear matter
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charmed meson In nuclear matter

e — ‘ iIsospin average

Suppression of DD
channel -

o production
approachy quark-meson
200 coyRiing at threshold

-we may observe enhancement of D+D-

production at threshold
- D+ meson bound nucleus may produce

Mass difference [MeV]
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charmed meson In nuclear matter

- Sub-threshold enhancement of D+D- production

on pbar-A interaction (Euro.Phys.J A,351)
p+ "Au—>D"+D +X

IN—medium
. masses

! free
fmasses
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on pbar-A interaction (Euro.Phys.J A,351)
p+ "Au—>D"+D +X

IN—medium
. masses

reduction because of
fermi-motion of nucleonin nucleus




charmed meson In nuclear matter

- Sub-threshold enhancement of D+D- production

on pbar-A interaction (Euro.Phys.J A,351)
p+ "Au—>D"+D +X

IN—medium
. masses

due to mass reduction reduction because of
fermi-motion of nucleonin nucleus




charmed meson In nuclear matter

- Sub-threshold enhancement of D+D- production
on pbar-A interaction (Euro.Phys.J A,351)
p+ "Au—>D"+D +X
. |heavy D In matter

m = =
asses X @D*D IN vacuum

due to mass reduction reduction because of
fermi-motion of nucleonin nucleus




charmed meson In nuclear matter

_esson from strange meson:
How to deduce K N interaction strength?




charmed meson In nuclear matter

_esson from strange meson:
How to deduce K N interaction strength?

B DATAFOPI K'(r'+A) Compare momentum SpeCtra
® DATA ANKE K'(p+A) for example, C and Pb

—— HSD (U=0 MeV)

- — HSD (U=20 MeV)

he spectra will contained
Information about real part
for KN potential
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0 01 02 03 04 05 06 0.7 08
p (GeV/c)

Phys. Rev. Lett. 102 (2009) 182501




charmed meson In nuclear matter

_esson from strange meson:
How to deduce K N interaction strength?

B DATAFOPI K'(r'+A) Compare momentum SpeCtra
® DATA ANKE K'(p+A) for example, C and Pb

—— HSD (U=0 MeV)

- — HSD (U=20 MeV)

he spectra will contained
Information about real part
for KN potential
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| same measurement can
TETEEVIrTEYEE  be possible on D mesons

p (GeV/c) : : : ;
Phys. Rev. Lett. 102 (2009) 182501 to investigate DN interaction




D meson nuclear bound state?

Theory tells us that b or D meson bound state
might be exist

ssDOA bound
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Physics Letters B 690 (2010) 369

-However, no way to produce slow D meson
D meson momentum ~ 2 GeV/c @ 10 GeV/c P




Production of slow D meson




Production of slow D meson

- (Probably) Best elementary process to
produce slowly moving D meson will be




Production of slow D meson

- (Probably) Best elementary process to
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Initial; | Final;
Ao AN (503 )




Production of slow D meson

- (Probably) Best elementary process to
produce slowly moving D meson will be
p+d— D™AT (forward)

Initial; Final;
Mot Lhes 05030

momentum for D-
~ 300 MeV/c
in Lab. flame

P e e

Momentum of D- produced this 0
elementary process is ~ 300 MeV/c p momentum [MeV/c]
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Production of slow D meson

- (Probably) Best elementary process to
produce slowly moving D meson will be

p+d— D™ AT (forward) B
G) 5
Initial: w Hlars|—
Al [ Ac(2593)" e
G S,
g momOn_ | g momentum for D-
D d | i e ~ 300 MeV/c
D £ in Lab. flame
: =
Momentum of D- produced this 0
elementary process is ~ 300 MeV/c p momentum [MeV/c]

Good process to produce D mesic nucleus
(if DN interaction is attractive )




Possible
DAY-1 experiment
at K10




DD production cross section
- No experimental data available for DD production
on pp reaction near the threshold PRD93.034016

pp -> D°D° B

—

Iy '
6.5 7.0
P, (GeV/c)

= With ¥(3770) Resonance
b == = Without ¥(3770) Resonance

PRD&89,114003

Eur.Phys.J. A48 (2012) 31

L
7.0
Py (GeV/c)

P (GeVic)




DD production cross section

DOpO production cross
section at threshold will be
sensitive with ¥(3770)

It ¥(3770) IS normal
charmonium ( like ¥(2S) ),
It will have strong coupling

1o pp

Enhancement of DD

production cross section
AR  cxpected near threshold

PHYSICAL REVIEW D 91, [114022 (2015)




DD production cross section
at J-PARC

. Production cross section
. ~ 100 nb (DoY) @6.6GeV/c
. ~200nb (p—pt) @6.6GeV/c

63 64 65 66 67 68 69 70 Beam inteﬂSity
300 : 3X1O7 ]5/65 (-IOO kW)

- Produced D pairs/100 days
BodlOc Do po)
1206l 00 (D)

O - Y(3770)—=)/¥Yrn—punn
63 64 65 gj(ee\?); 68 69 7.0 : . 6 X'l 02

PHYSICAL REVIEW D 91, [114022 (2015)

w/o ¥(3770)




Consideration for the detector

- Focusing on the pp — DD channel
- Momentum range for produced D

: 2.4 GeV/c -4.6 GeV/c
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Baseline design for the detector




Large solenoid magnet




Large solenoid magnet
(lke FINUDA magnet at Frascati)

—

— S=IT ) Maximum field 11T
total mass : SOOt il B Stored energy 8.1 MJ

’”‘ a EU.E — i =~ Inner diameter ® 2929 mm

Magnet length 2200 mm
' Inductance 22H
| Nominal current 2845 A
g Conductor NbTi—Al coextr.
‘ £ Type of winding Outer mandrel

=, Type of cooling indirect




Baseline design for the detector




Baseline design for the detector

Solenoid magnet (-1 1)

. Forward
T tracker
s =~ Time

calorimeter
(KLOE type)




Sighal and Background

pp — DVD0 — KTn~ K~ xnt (signal)
pp— K n K~ rn™ (background)

=1:1000
: 107 /pulse, 6.6 GeV/c p

|3p, | <15 MéVic : Required :
significance = 14. detected all 4 tracks
P TERM@RE N e Ll e

5100 days
: Precision on cross section

‘P.761.78 1.8 1.821.841.861.88 1.9 1.921.94 1.96

wieabiineinetid Mcasurement ~ 10% level




Expected precision of
DD measurement

PHYSICAL REVIEW D 91, [114022 (2015)

We may conclude whether the contribution from
¥(3770) exist on the D) production at

threshold or not.




Heavy Ion beam
with K10
spectrometer




Extension of J-PARC Hadron Facility

o 105m

K10
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T2 target T3 target

|
 HD-hall is extended by 105m.
 Two more production targets
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Extension of J-PARC Hadron Facility

56m _ . 105m ~

ﬂ D K1.lBR/K1[jl::j

e s SIS z

collision experlment can be done with!

beam transfer line from High-p to K10 p>m.

* " TWO more productlon targets



Summary

- Meson in nucleus will give us unigue information
about the QCD vacuum
( < qq > In finite density )

- charmed meson in nucleus will be one of the key
topics which can be realized at J-PARC K10

. Spectrometer at K10 is going to be

multi-purpose / large acceptance detector.

once beam transport line from High-p to K10

Is constructed, HI experiment with K10 spectrometer
will be possible.










