

# J-PARCにおける シングル・ダブルΛハイパー核の 崩壊π中間子分光実験計画

# 藤岡 宏之 (東工大) fujioka@phys.titech.ac.jp

To be uploaded on http://j-parc.jp/researcher/Hadron/en/Proposal\_e.html

Letter of Intent for J-PARC 50 GeV Synchrotron

# Decay Pion Spectroscopy of ${}^{5}_{\Lambda\Lambda}$ H produced by ${}^{7}\text{Li}(K^{-}, K^{+})$ reactions

Hiroyuki Fujioka<sup>1\*</sup>, Tomokazu Fukuda<sup>2,4†</sup>, Emiko Hiyama<sup>3,4</sup>, Toshio Motoba<sup>2,5</sup>, Tomofumi Nagae<sup>6</sup>, Sho Nagao<sup>7</sup>, Toshiyuki Takahashi<sup>8</sup>

#### Abstract

Proposed is a novel method to produce a double- $\Lambda$  hypernucleus without using nuclear emulsion. A  $\Xi^-$  bound in <sup>6</sup>He and a part of quasi-free  $\Xi^-$ 's, produced in <sup>7</sup>Li( $K^-$ ,  $K^+$ ) reactions, are absorbed in the reaction point, and  ${}^{5}_{\Lambda\Lambda}$ H may be formed via  $\Xi^- p \to \Lambda\Lambda$  conversion. Decay pion spectroscopy for  ${}^{5}_{\Lambda\Lambda}$ H  $\to {}^{5}_{\Lambda}$ He +  $\pi^-$  will be performed after event selection requiring a fast proton from non-mesonic weak decay of  ${}^{5}_{\Lambda}$ He. The experimental setup will be based on the  $\Xi$ -hypernuclear spectroscopy experiment E70; a new cylindrical detector system will be installed between the K1.8 beamline spectrometer and the S-2S spectrometer for detection of the decay pion and the proton.

#### Abstract

Proposed is a novel method to produce a double- $\Lambda$  hypernucleus without using nuclear emulsion. A  $\Xi^-$  bound in <sup>6</sup>He and a part of quasi-free  $\Xi^-$ 's, produced in <sup>7</sup>Li( $K^-$ ,  $K^+$ ) reactions, are absorbed in the reaction point, and  ${}_{\Lambda\Lambda}^5$ H may be formed via  $\Xi^- p \to \Lambda\Lambda$  conversion. Decay pion spectroscopy for  ${}_{\Lambda\Lambda}^5$ H  $\to {}_{\Lambda}^5$ He +  $\pi^-$  will be performed after event selection requiring a fast proton from non-mesonic weak decay of  ${}_{\Lambda}^5$ He. The experimental setup will be based on the  $\Xi$ -hypernuclear spectroscopy experiment E70; a new cylindrical detector system will be installed between the K1.8 beamline spectrometer and the S-2S spectrometer for detection of the decay pion and the proton.



「1」 特定のダブル∧ハイパー核(<sup>5</sup>H)の生成

<sup>7</sup>Li(K<sup>-</sup>, K<sup>+</sup>)<sup>5</sup><sub>A</sub>H + 2n <sup>cf. 12</sup>C( $\pi^+, K^+$ )<sup>12</sup><sub>A</sub>C <sup>6</sup>Li( $\pi^+, K^+$ )<sup>5</sup><sub>A</sub>He + p

 $\left(2-1\right)_{\Lambda\Lambda}^{5}H$  生成を実証する方法について  ${}_{5}^{5}H \rightarrow {}_{\Lambda}^{5}He + \pi^{-}$ 

(2-2) 崩壊パイ中間子分光による質量の決定

[3] J-PARC における実験計画 (from S=-1 to S=-2)



「1」 特定のダブル∧ハイパー核(<sup>5</sup>H)の生成

<sup>7</sup>Li(K<sup>-</sup>, K<sup>+</sup>)<sup>5</sup><sub>A</sub>H + 2n <sup>cf. 12</sup>C( $\pi^+, K^+$ )<sup>12</sup><sub>A</sub>C <sup>6</sup>Li( $\pi^+, K^+$ )<sup>5</sup><sub>A</sub>He + p

 $\begin{bmatrix} 2 - 1 \end{bmatrix}_{\Lambda\Lambda}^{5}H 生成を実証する方法について$  ${}_{\Lambda\Lambda}^{5}H \rightarrow {}_{\Lambda}^{5}He + \pi^{-}$ 

[2-2] 崩壊パイ中間子分光による質量の決定

[3] J-PARC における実験計画 (from S=-1 to S=-2)

## J-PARC Lol L06 (2002)

Letter of Intent for New Generation Spectroscopy of Hadron Many-Body Systems with Strangeness S=-2 and -1



#### 2.2.3 Proposed experiments

Based on the result of E906, we are going to propose a study of the double- $\Lambda$  hypernuclei by means of decay-pion spectroscopy. In E961, we will identify  ${}^{4}_{\Lambda\Lambda}$ H by using a <sup>7</sup>Li target, and will determine the mass within 0.5 MeV accuracy. At the Joint Project, we expect a K-beam with an intensity of 5-10 times greater than the AGS and therefore we will be able to identify several weaker channels than  ${}^{4}_{\Lambda\Lambda}$ H case, e.g.  ${}^{6}_{\Lambda\Lambda}$ He. Another interesting possibility is that the  $\Xi$ -hypernuclei produced in the  $(K^-, K^+)$  reaction on <sup>7</sup>Li will decay to  ${}^{5}_{\Lambda\Lambda}$ H with a large branching ratio of about 90% [14] (Fig. 15). When we use heavier targets like  ${}^{12}$ C, we can expect heavier double- $\Lambda$  hypernuclei like  ${}^{10}_{\Lambda\Lambda}$ Be.

http://www-ps.kek.jp/jhf-np/LOllist/LOllist.html



6/39





## $\Lambda\Lambda$ -Hypernuclear Chart

7/39





#### DLH event in Mod098 pl04



<u>J-PARC E07</u>

吉田さん@HYP2018

# 会力ウンタ実験による探索(1)





/10MeV/c<sup>2</sup>)

(a)

(b)



J.K. Ahn et al., Phys. Rev. Lett. 87, 132504 (2001)







### *P. Pile, HYP2003*

#### Interpretations other than ${}_{\Lambda}{}_{\Lambda}{}^{4}H$ 13/39 1) Twin hypernuclei 2) Double-A hypernuclei $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$ $^{7}_{\Lambda\Lambda}$ He $\rightarrow ^{7}_{\Lambda}$ Li<sup>(\*)</sup> + $\pi^{-}$ $\rightarrow$ <sup>7</sup>Be + $\pi^{-}$ $^{6}_{\Lambda}\text{He} \rightarrow {}^{6}\text{Li}^{(*)} + \pi^{-}$ **160**F The $^{7}_{\Lambda\Lambda}$ He decay 20 150 **Experimental Counts** 15 140 p<sub>h</sub> (MeV/c) 130 10 120 5 ٥t

85 115 90 95 100 105 110 120  $\pi$ -momentum (MeV/c) 90 I. Kumagai-Fuse and S. Okabe, 120 130 140 150 160 100 110 Phys. Rev. C 66, 014003 (2002) p, (MeV/c) S.D. Randeniya and E.V. Hungerford, Phys. Rev. C 76, 064308 (2007) They may be produced from  $\begin{bmatrix} 8\\ \Lambda\Lambda \end{bmatrix}$  or  $(\Xi^{-}, {}^{9}Be)_{atom}$ Hiroyuki Fujioka (Tokyo Tech.) / 728th ASRC seminar (JAEA) 2018.09.04

# ▶≧2020年代のカウンタ実験

#### S-2S Construction



J. Pochodzalla, HYP2015

HIAF in Huizhou/China High Intensity Heavy Ion Accelerator Facility

**View of the HIAF campus** 

New Hypernuclear Project

## Ender of the segment in December 2015 Market of the segment in December 2015 Market of the segment in December 2015 Market of the segment of the segment





14/39



I. Vassiliev, HYP2015



## BNL E906実験のアップグレード <sup>7</sup>Li( $K^-, K^+$ ){ $\Xi^- + {}^{6}\text{He}^*$ } $\longrightarrow [{}_{\Lambda\Lambda}{}^{6}\text{H}^*] + n$

## $\begin{bmatrix} {}^{6}_{\Lambda\Lambda} \mathrm{H}^{*} \end{bmatrix} \rightarrow {}^{5}_{\Lambda\Lambda} \mathrm{H} + n$

# <sup>7</sup>Li(K-,K+)反応の三束縛領域・非束縛領域に対応

#### Physics beyond E05

- \* Spin dependence in light  $\Xi$  hypernuclei
  - \*  $^{7}\text{Li}(\text{K}^{-}, \text{K}^{+})_{\Xi}^{7}\text{H}; \alpha \text{nn}\Xi^{-}$  Lightest  $\Xi$  hypernucleus ?
  - \*  ${}^{10}B(K^-, K^+)_{\Xi}{}^{10}Li; \alpha \alpha n \Xi^-$

ダブルハ複合核経由

- \* Heavy  $\Xi$  hypernuclei spectroscopy
  - \* Coulomb-Assisted bound states <sup>89</sup>Y(K-, K+)

Eハイパー核経由

 $_{\Xi^{-}}^{7}H \rightarrow _{\Lambda\Lambda}^{5}H + 2n$ を用いた $_{\Lambda\Lambda}^{5}H$ 生成

#### T. Nagae, HYP2018





# $7Li(K^-, K^+)_{\Xi}^7H$ reaction



 $-\Xi^{-}+{}^{6}\text{He}(2+)$  $-\Xi^{-}+{}^{6}\text{He}(2+)$  $\Xi^{-} + {}^{6}\text{He}(0+)$  $\Xi^{+}$  "He(0+) ESC ND 0.020 0.020  $(\mu b/(sr MeV))$  $(\mu b/(sr MeV))$ = 1.025= 1.055= 1.3 $k_{c} = 1.3$ 0.015 0.015  $\mathrm{d}^2\sigma/\mathrm{d}\Omega_{\mathrm{K}^+}\mathrm{d}\mathrm{E}_{\mathrm{K}^+}$  $d^2\sigma/d\Omega_{K+}dE_{K+}$  , old 0.000 0.000 -10 -5 0 5 10 -10 -5 0 5 10 E (MeV) E (MeV)

Fig. 1 Calculated <sup>7</sup>Li( $K^-$ ,  $K^+$ ) inclusive spectra for  $p_{K^-} = 1.65$  GeV/c and  $\theta_{K^+} = 0^\circ$ . The *left* and *right panel* show the result corresponding to the case using potential ND and ESC with three  $k_f$  parameters listed in Table 1, respectively. These spectra are smeared assuming 2 MeV detector resolution

#### Koike and Hiyama, Few-Body Syst. 54, 1275 (2013)

E. Hiyama et al., Phys. Rev. C 78, 054316 (2008)

# Production via E-hypernuclear decay 18/39

PHYSICAL REVIEW C

VOLUME 54, NUMBER 1

JULY 1996

Double- $\Lambda$  hypernuclear formation via a neutron-rich  $\Xi$  state

Izumi Kumagai-Fuse and Yoshinori Akaishi Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan (Received 21 March 1996)

Conversion processes for  ${}^{7}_{\Xi}$ H are discussed as a typical example of the double- $\Lambda$  hypernuclear formation via a neutron-rich  $\Xi$  state.  ${}^{5}_{\Lambda\Lambda}$ H is formed with a surprisingly large branching ratio of about 90% from  ${}^{7}_{\Xi}$ H that is produced by the ( $K^-, K^+$ ) reaction on the  ${}^{7}$ Li target. The  ${}^{7}_{\Xi}$ H state has a narrow width, 0.75 MeV, and its population can be confirmed by tagging  $K^+$  momentum. [S0556-2813(96)50507-8]

PACS number(s): 21.80.+a. 21.45.+v. 25.80.Nv, 25.80.Pw

I. Kumagai-Fuse, Y. Akaishi, Phys. Rev. C 54, R24 (1996)

$${}^{7}_{\Xi}\mathrm{H} \rightarrow {}^{5}_{\Lambda\Lambda}\mathrm{H} + n + n \sim 11 \mathrm{MeV},$$

$$\rightarrow^4_{\Lambda} \mathrm{H} + \Lambda + n + n \sim 7 \mathrm{MeV},$$

$$\rightarrow^4_{\Lambda} \mathrm{H}^* + \Lambda + n + n \sim 6 \mathrm{MeV},$$

$$\rightarrow$$
<sup>3</sup>H+ $\Lambda$ + $\Lambda$ + $n$ + $n$  ~5 MeV.

- Only 4 decay channels are allowed energetically
- Among them, the channel with the **fewest** bodies and the **largest** Q-value is most predominant (B.R. ~ 90% !!)





Khin Swe Myint, S. Shinmura, and Y. Akaishi, Eur. Phys. A 16, 21 (2003)



H. Nemura et al., Phys. Rev. Lett. 94, 202502 (2005)



Finally, we commented on the size expected for the  $\Lambda\Lambda$ - $\Xi N$  mixing effect in these light  $\Lambda\Lambda$  hypernuclei. For models such as NSC97e which are close to describing well the  $\Lambda\Lambda$  interaction as deduced from  $B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}He)$ , we have argued that the  $\Lambda\Lambda$ - $\Xi N$  coupling effect should not exceed 0.2 MeV in {}^{6}\_{\Lambda\Lambda}He, and a similar order of magnitude is expected for this and other medium effects in the A=5  $\Lambda\Lambda$  hypernuclei. For comparison with the better studied S=-1

I. N. Filikhin, A. Gal, and V. M. Suslov, Phys. Rev. C **68**, 024002 (2003).

I.N. Filikhin and A. Gal, Nucl. Phys. A **707**, 491 (2002)

 Many theoretical calculations support the existence of bound <sup>5</sup>/<sub>Λ</sub>H.

 caveat: the ΛΛ interaction might be too strong so as to account for the "old" binding energy of <sup>6</sup>ΛΛHe.

 $\Delta B_{\Lambda\Lambda} = 1.01 \pm 0.20^{+0.18}_{-0.11} \,\text{MeV} \ (2002) \longrightarrow 0.67 \pm 0.17 \,\text{MeV} \ (2013)$ 

• The comparison of the  $\Lambda\Lambda$  bond energy between  ${}^{5}_{\Lambda\Lambda}H$  and  ${}^{6}_{\Lambda\Lambda}He$  will be very important.



特定のダブル∧ハイパー核(ヘ^5H)の生成

<sup>7</sup>Li(K<sup>-</sup>, K<sup>+</sup>)  ${}^{5}_{\Lambda\Lambda}$ H + 2n <sup>cf. 12</sup>C( $\pi^{+}, K^{+}$ )  ${}^{12}_{\Lambda}$ C <sup>6</sup>Li( $\pi^{+}, K^{+}$ )  ${}^{5}_{\Lambda}$ He + p

# $\left(2-1\right)_{\Lambda\Lambda}^{5H}$ 生成を実証する方法について ${}_{5}^{5}H \rightarrow {}_{\Lambda}^{5}He + \pi^{-}$

(2-2) 崩壊パイ中間子分光による質量の決定

## [3] J-PARC における実験計画 (from S=-1 to S=-2)





Y. Yamamoto, M. Wakai, T. Motoba and T. Fukuda, Nucl. Phys. A 625, 107 (1997) Hiroyuki Fujioka (Tokyo Tech.) / 728th ASRC seminar (JAEA) 2018.09.04



<u>BNL-AGS E906 (P961R)</u>
 two pions from sequential MWD

→ clue to identify parent double-∧ hypernuclei and daughter single-∧ hypernuclei

 This method is difficult to apply in case of <sup>5</sup><sub>ΛΛ</sub>H decay



### ~ ≈ 99MeV/c

 $^{5}_{\Lambda\Lambda}H \rightarrow ^{4}_{\Lambda}H + p +$  $^{4}_{\Lambda}H \rightarrow {}^{4}He +$ 

 ${}^{5}_{\Lambda}H \rightarrow {}^{4}_{\Lambda}H + p + \pi^{-}(99)$ 

120

ПΠ

ПП

100

 П

пп

 $^{-5}_{\Lambda\Lambda}H \rightarrow ^{4}_{\Lambda}H + p + \pi^{-}(99)$ 

 $_{A}^{3}H \rightarrow ^{3}He +\pi(135?)$ 

 $^{4}$ He  $\rightarrow$   $^{3}$ He + p + $\pi$  (97)

140

 ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi(133)$ 

 ${}_{A}^{5}\text{He} \rightarrow {}^{4}\text{He} + p + \pi(99)$ 

 $\rightarrow$  <sup>3</sup>He +  $\pi$  (114.3)

Π

 $^{4}_{\Lambda\Lambda}H \rightarrow ^{4}_{\Lambda}He + \pi^{-}(116?)$ 

 ${}^{4}_{\Lambda\Lambda}H \rightarrow {}^{4}_{\Lambda}He^* + \pi(104)$ 

 $^{\circ}H \rightarrow ^{\circ}H + p + \pi (101)$ 

 ${}^{4}_{A}\text{He}^{*} \rightarrow {}^{3}_{A}\text{H} + p$ 

160

150

140

130

120

110

100

90

80

80

 $P_{\pi H}$  (MeV/c)

# $^{5}_{\Lambda\Lambda}$ H → $^{5}_{\Lambda}$ He + $\pi^{-}$ $^{5}_{\Lambda}$ He → $^{4}$ He + $\approx$ 133MeV/c

The distinction between the two decay modes are experimentally difficult.

From a point of view of decay pion spectroscopy, the decay mode on the left side is regarded as a background process.

P<sub>πL</sub> (MeV/c) Hiroyuki Fujioka (Tokyo Tech.) / 728th ASRC seminar (JAEA) 2018.09.04

160

# Novel method for ${}_{\Lambda\Lambda}{}^{5}H$ identification 27/39

Decay pion spectroscopy with tagging a proton from NMWD  $_{\Lambda\Lambda}{}^{5}H \rightarrow {}^{5}_{\Lambda}He + \pi^{-}$  (referred to as a "fast proton")

 $^{5}_{\Lambda}\text{He} \rightarrow {}^{3}\text{H}+p+n$ proton energy distribution



M. Agnello et al., Nucl. Phys. **804**, 151 (2008)

<u>MWD</u>  $\Lambda \rightarrow p + \pi^- + 38 \text{ MeV}$ 

π<sup>-</sup> carries away
 most of the released energy

(1N-induced) NMWD

 $\Lambda + p \rightarrow n + p + 176 \,\mathrm{MeV}$ 

# BG rejection with fast proton tagging 28/39

## three processes with ${}^{4}_{\Lambda}H(\rightarrow {}^{4}He + \pi^{-})$ in the final state

(a)  

$$\begin{array}{c}
\stackrel{7}{=}H \rightarrow \stackrel{5}{}_{\Lambda\Lambda}H + n + n \sim 11 \text{ MeV}, \\
\stackrel{\rightarrow}{\rightarrow} \stackrel{4}{\rightarrow}H + \Lambda + n + n \sim 7 \text{ MeV}, \quad \text{slow } \Lambda \rightarrow p + \pi^{-} \\
\stackrel{\rightarrow}{\rightarrow} \stackrel{4}{\rightarrow}H^{+} + \Lambda + n + n \sim 6 \text{ MeV}, \quad \text{slow } \Lambda \rightarrow p + \pi^{-} \\
\stackrel{\rightarrow}{\rightarrow} \stackrel{3}{\rightarrow}H + \Lambda + n + n \sim 5 \text{ MeV}. \\
(b) \quad \begin{bmatrix} \stackrel{6}{}_{\Lambda\Lambda}H^{*} \end{bmatrix} \rightarrow \stackrel{4}{\rightarrow}\stackrel{4}{\rightarrow}H + \Lambda + n \quad \text{slow } \Lambda \rightarrow p + \pi^{-} \\
\stackrel{(c)}{\rightarrow}\stackrel{5}{}_{\Lambda\Lambda}H \rightarrow \stackrel{4}{\rightarrow}\stackrel{4}{}_{\Lambda}H + (p + \pi^{-}/n + \pi^{0}) \quad \text{proton from MWD/no proton} \\
\stackrel{4}{\rightarrow} \stackrel{4}{\rightarrow}H e + \pi^{-} \\
\end{array}$$

A fast proton from NMWD has a larger kinetic energy than from MWD (including free Λ decay)

## • Selective production of ${}_{\Lambda\Lambda}{}^{5}H$ in a counter experiment

- Determination of ΛΛ bond energy
- Lifetime measurement of  ${}_{\Lambda\Lambda}{}^{5}H$
- Constraint on branching ratios such as:

$${}_{\Xi^{-}}^{7}\mathrm{H} \rightarrow {}_{\Lambda\Lambda}^{5}\mathrm{H} + 2n$$

$${}_{\Lambda\Lambda}^{5}\mathrm{H} \rightarrow {}_{\Lambda}^{4}\mathrm{H} + p + \pi^{-}$$

$${}_{\Lambda\Lambda}^{5}\mathrm{H} \rightarrow {}_{\Lambda}^{5}\mathrm{He} + \pi^{-}$$

Only possible by a counter experiment







# 【 】 特定のダブルハハイパー核(<sup>5</sup>H)の生成

 $^{7}\text{Li}(K^{-}, K^{+})^{5}_{\Lambda\Lambda}H + 2n \quad \text{cf. } {}^{12}\text{C}(\pi^{+}, K^{+})^{12}_{\Lambda}\text{C} \\ {}^{6}\text{Li}(\pi^{+}, K^{+})^{5}_{\Lambda}\text{He} + p$ 

 $\left(2-1\right)_{\Lambda\Lambda}$ H 生成を実証する方法について  ${}_{5}^{5}H \rightarrow {}_{\Lambda}^{5}He + \pi^{-}$ 

[2-2] 崩壊パイ中間子分光による質量の決定

(3) J-PARC における実験計画 (from S=-1 to S=-2)







## requirements

- 1. High resolution for (K<sup>-</sup>,K<sup>+</sup>) spectroscopy in order to distinguish  ${}_{\Xi^{-}}^{7}H$  from QF events
  - $\rightarrow$  S-2S will be the best option
- 2. Decay  $\pi^-$  and proton measurement
  - → a large-acceptance and compact CDS (cylindrical detector system)

superconducting magnet ( $\geq$ 2Tesla) gaseous detector (drift chamber? TPC?) plastic scintillator hodoscopes

J-PARC K1.8 beamline



### <sup>7</sup>Li標的+ CDS + S-2S @ K1.8 beamline

1.本測定と同じ条件で予備データ取得(目標の数%) ~バックグラウンドの理解~

2. シングルΛハイパー核に対する崩壊π中間子分光  

$$^{7}\text{Li}(\pi^+, K^+)^{7}_{\Lambda}\text{Li}^{(*)} \Longrightarrow \begin{cases} {}^{7}_{\Lambda}\text{Li} o {}^{7}\text{Be} + \pi^- \\ {}^{6}_{\Lambda}\text{He} o {}^{6}\text{Li} + \pi^- \\ {}^{4}_{\Lambda}\text{H} o {}^{4}\text{He} + \pi^- \\ {}^{3}_{\Lambda}\text{H} o {}^{3}\text{He} + \pi^- \end{cases}$$
cf.  ${}^{5}_{\Lambda}\text{He}$  は準二体崩壊 ( ${}^{5}\text{Li} + \pi^-$ )

# γLiに対する崩壊π中間子分光

33/39





<sup>6</sup><sub>A</sub>He

n in <sup>6</sup>He

10

r (fm)

FIG. 2. Density distribution of the valence neutron,  $\rho_n$ , in the

Hiyama et al., PRC 53, 2075 (1996)

ground state of  ${}^{6}_{\Lambda}$ He together with those of the  $\Lambda$  particle,  $\rho_{\Lambda}$ , and

a single nucleon in the  $\alpha$  core. The radius r is measured from the

15

 $J = 1^{-1}$ 





Hiyama et al., PRC 59, 2351 (1999)

 $^{6}_{\Lambda}$ He + p

 $10^{-1}$ 

10-2

10<sup>-5</sup>

10<sup>-6</sup>

c.m. of the  $\alpha$  core.

0

(°-ш) 10<sup>-3</sup> 0 10<sup>-4</sup>

## 



 $^3_{\Lambda}$  H

 $^4_\Lambda$  H

 $^6_\Lambda$  H

 $^{6}_{\Lambda}$  He



and Helmholtz Institute Mainz, Germany

0<sup>-3</sup>

0<sup>-4</sup>

0<sup>-5</sup>

0<sup>-6</sup>

0<sup>-7</sup>

*E-mail:* achenbach@uni-mainz.de, pochodza@uni-mainz.de

## <sup>7</sup>Li標的を用いると、<sup>6</sup><sup>A</sup>Heが比較的多く生成される

|                        |                            | <sup>9</sup> Be target |                      |                             | <sup>7</sup> Li target | <sup>6</sup> Li target | 10 <sup>-2</sup> ⊨                                                                                                                                             |
|------------------------|----------------------------|------------------------|----------------------|-----------------------------|------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $^{A}_{\Lambda}Z$      | $p_{\pi} (\text{MeV}/c)$   | $^9_{\Lambda}$ Li*     | $^{8}_{\Lambda}$ Li* | $^{8}_{\Lambda}{ m He^{*}}$ | $^{7}_{\Lambda}$ He*   | $^{6}_{\Lambda}$ He*   | $^{7}_{\Lambda}$ He*                                                                                                                                           |
| $^{3}_{\Lambda}$ H     | $114.37 \pm 0.08$          | 0.56                   | 1.18                 | 0.67                        | 1.49                   | 2.48                   | $\mathbf{p} = \begin{bmatrix} 10^{-4} \\ 10^{-5} \\ 10^{-6} \\ 10^{-7} \end{bmatrix} \begin{pmatrix} 10^{-4} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ |
| $^4_{\Lambda}{ m H}$   | $132.87 \pm 0.06$          | 3.56                   | 3.74                 | 7.51                        | 12.61                  | 8.81                   |                                                                                                                                                                |
| $^{6}_{\Lambda}{ m H}$ | $135.13\pm1.52$            | 0.03                   | < 0.01               | 0.23                        | 0.10                   | _                      |                                                                                                                                                                |
| $^{6}_{\Lambda}$ He    | $108.47 \pm 0.18$          | 2.44                   | 1.25                 | 1.47                        | 3.53                   | _                      |                                                                                                                                                                |
| $^{7}_{\Lambda}$ He    | $114.97 \pm 0.15 \pm 0.17$ | 2.12                   | 0.44                 | 1.35                        | -                      | _                      |                                                                                                                                                                |
| $^{8}_{\Lambda}$ He    | $116.50\pm1.08$            | 0.04                   | -                    | _                           | -                      | _                      |                                                                                                                                                                |
| $^{7}_{\Lambda}$ Li    | $108.11 \pm 0.05$          | 1.54                   | 1.68                 | _                           | -                      | _                      |                                                                                                                                                                |
| $^{8}_{\Lambda}$ Li    | $124.20 \pm 0.05$          | 0.85                   | _                    | _                           | _                      | _                      |                                                                                                                                                                |





鵜養氏 第4回『ストレンジネス核物理を考える会』(2017.8.7)より



H. Bando, T. Motoba, J. Zofka, Int. J.Mod. Phys. A 5, 4021(1990) Hiroyuki Fujioka (Tokyo Tech.) / 728th ASRC seminar (JAEA) 2018.09.04

38/39







- ◆ <sup>5</sup>∧∧Hの崩壊π中間子分光実験を計画中
  - ▶ <sup>7</sup> EHの崩壊 or ダブルΛ複合核 経由で <sup>5</sup>ΛΛH を生成
  - ▶ 娘ハイパー核 <sup>5</sup><sup>∧</sup>He の NMWD 由来の陽子をタグ
- パイロット実験として <sup>7</sup>Li(π<sup>+</sup>,K<sup>+</sup>) 反応による
   <sup>3,4</sup>ΛH, <sup>6</sup>ΛHe, <sup>7</sup>ΛLi の崩壊π中間子分光を検討中
  - J-PARC においてハドロンビームを用いた 崩壊π中間子分光による束縛エネルギー決定の 原理実証を兼ねる