

The radiative decays of the singly heavy baryons in chiral perturbation theory

Guang-Juan Wang Japan Atomic Energy Agency

For more details and references: GJW, L. Meng, and S. L. Zhu, Phys.Rev. D99 (2019) no.3, 034021.

Outline

- Singly heavy baryons
- > Chiral perturbation theory

➤ Radiative decay amplitudes of the singly heavy baryons up to next-to-next-to - leading order(NNLO).

> Lower energy constants (LECs): Heavy quark symmetry

> Numerical results

> Summary

Baryon

• Baryon: qqq. $3 \otimes 3 \otimes 3 = 1 \oplus 8_1 \oplus 8_2 \oplus 10$.

- Singly heavy baryon: qqQ.
- Some strong decay channels are forbidden by the phase space.
- The electromagnetic form factors encode crucial information, for instance, the radiative decay width.

Singly heavy baryon

• Singly heavy baryon: $qqQ. 3 \otimes 3 = \overline{3}_A \oplus 6_S$.

• diquark(qq)
$$\implies \overline{3}_f (s_l = 0)$$

 $\implies 6_f (s_l = 1)$

• Spin- $\frac{1}{2}$: $\psi_{\overline{3}}, \psi_{6}$ Spin- $\frac{3}{2}$: $\psi_{6^*}^{\mu}$

• $m_Q \rightarrow \infty$, ψ_6 and $\psi^{\mu}_{6^*}$ degenerate.

$$\psi_{\bar{3}} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix} \qquad \psi_6 = \begin{pmatrix} \Sigma_c^{++} & \frac{\Sigma_c^+}{\sqrt{2}} & \frac{\Xi_c'^+}{\sqrt{2}} \\ \frac{\Sigma_c^+}{\sqrt{2}} & \Sigma_c^0 & \frac{\Xi_c'^0}{\sqrt{2}} \\ \frac{\Xi_c'^+}{\sqrt{2}} & \frac{\Sigma_c'}{\sqrt{2}} & \Omega_c^0 \end{pmatrix} \qquad \psi_{6^*}^{\mu} = \begin{pmatrix} \Sigma_c^{*++} & \frac{\Sigma_c^{*+}}{\sqrt{2}} & \frac{\Xi_c^{*+}}{\sqrt{2}} \\ \frac{\Sigma_c^{*+}}{\sqrt{2}} & \Sigma_c^{*0} & \frac{\Xi_c^{*0}}{\sqrt{2}} \\ \frac{\Xi_c'^+}{\sqrt{2}} & \frac{\Xi_c'^0}{\sqrt{2}} & \Omega_c^0 \end{pmatrix}$$

A: antisymmetric S: symmetric

Chiral perturbation theory(ChPT)

- $m_q \ll 1 \text{ GeV} \leq m_c$, m_b , m_t ; chiral limit: $m_q = 0$.
- Chiral symmetry: $SU(3)_R \times SU(3)_L \times U(1)_R \times U(1)_L$

$$\mathcal{L}_{QCD}^{0} = \sum_{l=u,d,s} (\bar{q}_{R,l} i D \!\!\!/ q_{R,l} + \bar{q}_{L,l} i D \!\!\!/ q_{L,l}) - \frac{1}{4} \mathcal{G}_{\mu\nu,a} \mathcal{G}_{a}^{\mu\nu}$$

- $SU(3)_R \times SU(3)_L \rightarrow SU(3)_V \longrightarrow$ 8 Goldstone Bosons
- Lagrangian: chiral symmetry, CPT.. Low energy constants Experiment
- expand coefficient: $p/\Lambda_{\chi} \longrightarrow$ power counting

$$\mathcal{L}_{\phi}^{(2)} = \frac{F_{\phi}^2}{4} \operatorname{Tr}[\nabla_{\mu}U\nabla^{\mu}U^{\dagger}] \quad \text{with} \quad \phi = \sqrt{2} \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0 \\ K^- & \overline{K}^0 & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$
$$= \xi^2 = e^{\frac{i\phi}{F_{\phi}}}, \quad \nabla_{\mu}U = \partial_{\mu}U + ieA_{\mu}[Q, U] \quad \qquad Q = \operatorname{diag}(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$$

U

HBChPT

- $M_B > 1$ GeV and $M_B \neq 0$ in chiral limit. \longrightarrow breaks the power counting.
- "light" component B(p) and "heavy" component H(p)

 $p^{\mu} = Mv^{\mu} + k^{\mu} \qquad \text{velocity, } v^{2} = 1$ $B(p) = e^{iMv \cdot x} \frac{1 + \psi}{2} \psi, \quad H(p) = e^{iMv \cdot x} \frac{1 - \psi}{2} \psi$ $\mathcal{L} = i\bar{B}_{v}(v \cdot D)B_{v} - \bar{H}_{v}(iv \cdot D + 2M_{B})H_{v} + i\bar{B}_{v}\not{D}_{\perp}H_{v} + i\bar{H}_{v}\not{D}_{\perp}B_{v}$ $D_{\perp}^{\mu} = D_{\mu} - D \cdot vv^{\mu}$ M=0 $M=2M_{B}$

• Integrate the heavy component out,

$$\begin{split} \mathcal{L} &= \bar{B}_v (iv \cdot D + i \not{\!\!\!D}_\perp \frac{1}{iv \cdot D + 2M_B} \not{\!\!\!D}_\perp) B_v \\ &= \bar{B}_v (iv \cdot D) B_v - \mathcal{O}(\frac{1}{M_B}) + \dots & \text{E. E. Jenkins et al. Phys. Lett, B255} \\ & \text{T. R. Hemmert et al. J. Phys. 1998, G24} \end{split}$$

Power-Counting Scheme

The expansion coefficients: the residue momentum of the baryons and the momentum (mass) of the pseudoscalar mesons.

✓ The chiral dimension:

$$D = 2L + I_B + 2 + \sum_{n=1}^{\infty} 2(n-1)N_{2n}^M + \sum_{n=1}^{\infty} (n-2)N_n^B.$$

- *L*: the number of the loops. $\mathcal{O}(p^4)$
- I_B : the number of the internal baryon lines. $\mathcal{O}(p^{-I_B})$
- N_{2n}^M : the number of the meson interaction vertices at $\mathcal{O}(p^{2n})$
- N_n^B : the number of the baryon interaction vertices at $\mathcal{O}(p^n)$

✓ The decay amplitude reads

• spin- $\frac{1}{2}$ \rightarrow spin- $\frac{1}{2}$ + γ : $\psi_6 \rightarrow \psi_{\bar{3}} + \gamma$

 $\mathcal{M} = -ie\epsilon^{\mu} \langle \psi(p')|j_{\mu}|\psi(p)\rangle = -ie\epsilon^{\mu} \bar{\psi}(p')[(\gamma_{\mu} - \frac{\delta}{q^2}q_{\mu})F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{M+M'}F_2(q^2)]\psi(p),$

✓ The electromagnetic matrix element in the nonrelativistic limit

$$\begin{split} \psi(p')|j_{\mu}|\psi(p)\rangle &= e\bar{B}(p')[(v_{\mu} - \frac{\delta}{q^2}q_{\mu})G_E(q^2) + \frac{2[S^{\mu}, S^{\nu}]q_{\nu}}{M + M'}G_M(q^2)]B(p), \\ G_E(q^2) &= F_1(q^2) + \frac{q^2}{2(M + M')^2}F_2(q^2), \qquad \text{In CMS:} \\ G_M(q^2) &= F_2(q^2) + F_1(q^2), \qquad \nu = (1, 0, 0, 0) \end{split}$$

Pauli-Lubanski operator :

$$\Gamma = \frac{4\alpha |\mathbf{p}_{\gamma}|^{3}}{(M+M')^{2}} |G_{M}(0)|^{2} \qquad S^{\mu} = \frac{i}{2} \gamma^{5} \sigma^{\mu\nu} v_{\nu}$$

D. B. Leinweber, et al. Phys. Rev. D 43, 1659 (1991).B. Kubis et al. Eur. Phys. J. C 18, 747 (2001).

• spin-
$$\frac{3}{2}$$
 \rightarrow spin- $\frac{1}{2}\gamma$: $\psi_{6^*}^{\mu} \rightarrow \psi_{\bar{3},6} + \gamma$

✓ The electromagnetic matrix element,

$$\langle \psi_{6^*}^{\rho} | j_{\mu} | \psi \rangle = e \bar{\psi}_{6^*}^{\rho} (p') \Gamma_{\rho\mu} \psi(p),$$

$$\Gamma_{\rho\mu} = G_1(q^2) (q_{\rho} \gamma_{\mu} - q \cdot \gamma g_{\rho\mu}) \gamma_5 + G_2(q^2) (q_{\rho} p'_{\mu} - q \cdot p' g_{\rho\mu}) \gamma_5 + G_3(q^2) (q_{\rho} q_{\mu} - q^2 g_{\rho\mu}) \gamma_5,$$

- ✓ $G_3(q^2)$ does not contribute when the photon is on-shell.
- ✓ In HBChPT scheme,

$$\begin{split} \Gamma_{\rho\mu} &= 2G_1(q^2)(q_\rho S_\mu - q \cdot Sg_{\rho\mu}) + G_2(q^2) \frac{2M'}{M + M'} (q_\rho v_\mu - q \cdot vg_{\rho\mu}) q \cdot S \\ & G_{M1}(q^2) = \frac{1}{4} \left[G_1 \frac{M_+(3M' + M) - q^2}{M'} + G_2(M_+M_- - q^2) + 2(G_3 + G_2)q^2 \right], \\ & G_{E2}(q^2) = \frac{1}{4} \left[G_1 \frac{M_+M_- + q^2}{M'} + G_2(M_+M_- - q^2) + 2(G_2 + G_3)q^2 \right], \\ \text{With} \quad M_+ = M + M', \ M_- = M' - M \end{split} \qquad \begin{array}{l} \text{A. Faessler, et al., PRD 74, 074010.} \\ & \text{H. F. Jones et al., Ann. Phys. (N.Y.) 81, 1.} \end{array}$$

• spin-
$$\frac{3}{2}$$
 \rightarrow spin- $\frac{1}{2}\gamma$: $\psi_{6^*}^{\mu} \rightarrow \psi_{\bar{3},6} + \gamma$

✓ The electromagnetic matrix element,

$$\langle \psi_{6^*}^{\rho} | j_{\mu} | \psi \rangle = e \bar{\psi}_{6^*}^{\rho} (p') \Gamma_{\rho\mu} \psi(p),$$

$$\Gamma_{\rho\mu} = G_1(q^2) (q_{\rho} \gamma_{\mu} - q \cdot \gamma g_{\rho\mu}) \gamma_5 + G_2(q^2) (q_{\rho} p'_{\mu} - q \cdot p' g_{\rho\mu}) \gamma_5 + G_3(q^2) (q_{\rho} q_{\mu} - q^2 g_{\rho\mu}) \gamma_5,$$

- ✓ $G_3(q^2)$ does not contribute when the photon is on-shell.
- ✓ In HBChPT scheme,

$$\begin{split} \Gamma_{\rho\mu} &= 2G_1(q^2)(q_\rho S_\mu - q \cdot Sg_{\rho\mu}) + G_2(q^2) \frac{2M'}{M + M'}(q_\rho v_\mu - q \cdot vg_{\rho\mu})q \cdot S \\ & G_{M1}(q^2) = \frac{1}{4} \left[G_1 \frac{M_+(3M' + M) - q^2}{M'} + G_2(M_+M_- - q^2) + 2(G_3 + G_2)q^2 \right], \\ & G_{E2}(q^2) = \frac{1}{4} \left[G_1 \frac{M_+M_- + q^2}{M'} + G_2 M_+M_- - q^2) + 2(G_2 + G_3)q^2 \right], \quad \propto M' - M \\ \text{With} \ M_+ &= M + M', \ M_- &= M' - M \end{split} \qquad \begin{aligned} \text{A. Faessler, et al., PRD 74, 074010.} \\ & \text{H. F. Jones et al., Ann. Phys. (N.Y.) 81, 1.} \end{aligned}$$

The transition magnetic moment is defined as

$$\mu=\sqrt{rac{2}{3}}rac{G_{M1}(0)}{2M}.$$

With the G_{M1} and G_{E2} , the helicity amplitudes are defined as,

$$A_{3/2}(q^2) = -\sqrt{\frac{\pi\alpha\omega}{2M^2}} [G_{M1}(q^2) + G_{E2}(q^2)],$$
$$A_{1/2}(q^2) = -\sqrt{\frac{\pi\alpha\omega}{6M^2}} [G_{M1}(q^2) - 3G_{E2}(q^2)],$$

with

$$\omega = \frac{M^{'2} - M^2 + q^2}{2M'}.$$

The radiative decay width reads,

A. Faessler, et al. , PRD 74, 074010.

H. F. Jones et al., Ann. Phys. (N.Y.) 81, 1.

$$\Gamma = \frac{MM'}{8\pi} \left(1 - \frac{M^2}{M'^2} \right)^2 \left(A_{3/2}^2(0) + A_{1/2}^2(0) \right).$$

Tree diagrams

- The single line: spin- $\frac{1}{2}$ heavy baryon, the double line: spin- $\frac{3}{2}$ heavy baryon. The curve line: the photon.
- The solid circle: $\mathcal{O}(p^2)$, solid square: $\mathcal{O}(p^3)$, square: $\mathcal{O}(p^4)$
- Diagrams with chiral dimension D_{χ}

 $\mathcal{O}(p^{D_\chi})$ radiative decay amplitude $\mathcal{O}(p^{D_\chi-1})$ transition magnetic moment

Loop diagrams

$\mathcal{O}(p)$ Lagrangian

$$\begin{split} D_{\mu}\psi &= \partial_{\mu}\psi + \Gamma_{\mu}\psi + \psi\Gamma_{\mu}^{T}, \\ \Gamma_{\mu} &= \frac{1}{2}[\xi^{\dagger}, \partial_{\mu}\xi] + \frac{i}{2}eA_{\mu}(\xi^{\dagger}Q_{B}\xi + \xi Q_{B}\xi^{\dagger}), \\ u_{\mu} &= \frac{i}{2}\{\xi^{\dagger}, \partial_{\mu}\xi\} - \frac{1}{2}eA_{\mu}(\xi^{\dagger}Q_{B}\xi - \xi Q_{B}\xi^{\dagger}), \\ \bullet \ Q_{B} &= Q + \frac{1}{2}\tilde{Q}. \ Q_{c} = \text{diag} \ (1, 0, 0). \ Q_{b} = \text{diag} \ (\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}). \end{split}$$

- g_2 and $g_4 \leftarrow \Gamma(\Sigma_c^{++} \to \Lambda_c^+ \pi^+)$ and $\Gamma(\Sigma_c^{*++} \to \Lambda_c^+ \pi^+)$. PLB 704 547-550
- Other g_i are obtained through the quark model.

$$g_1 = 0.98, \quad g_2 = -\sqrt{\frac{3}{8}}g_1 = -0.60, \quad g_3 = \frac{\sqrt{3}}{2}g_1 = 0.85,$$

 $g_4 = -\sqrt{3}g_2 = 1.04, \quad g_5 = -\frac{3}{2}g_1 = -1.47, \quad g_6 = 0,$ $S_l = 0$

- $\operatorname{Tr}(Q) = 0$ and $\operatorname{Tr}(\tilde{Q}) \neq 0$
- $\tilde{f}^+_{\mu
 u}$: the contributions from the light quarks, 8_f .
- $Tr(f_{\mu\nu}^+)$: the contributions from the heavy quarks, 1_f .

$$\begin{array}{ll} \checkmark \ \chi_{\pm}, \ 8_{f} \\ & \chi_{\pm} = \xi^{\dagger} \chi \xi^{\dagger} \pm \xi \chi^{\dagger} \xi, \\ & \chi = 2 B_{0} \mathrm{diag}(m_{u}, m_{d}, m_{s}), \end{array}$$

• At the leading order $\chi_+ = \operatorname{diag}(0, 0, 1)$ • $8 \otimes 8 = 1 \oplus 8_1 \oplus 8_1 \oplus 10 \oplus \overline{10} \oplus 27$

 \mathcal{S}_{123} : symmetrization operator ϵ_{ijk} : Levi-Civita symbol

1	8_1	8_2	10	$\overline{10}$	27
$\operatorname{Tr}(u_{\mu}u_{\nu})$	$[u_{\mu}, u_{ u}]$	$\{u_{\mu}, u_{\nu}\}$	$\mathcal{S}_{ijk}\mu^{\mu i}_{a}\mu^{ u j}_{b}\epsilon^{abk}$	$\mathcal{S}_{abc}\mu^{\mu i}_{a}\mu^{ u j}_{b}\epsilon_{ijc}$	$\{u_b^{\mu a} u_j^{\nu i}\}_{\{bj\}}^{\{ai\}}$

$\mathcal{O}(p^2)$ Lagrangian

$$\begin{aligned} \mathcal{L}_{B\gamma}^{(2)} &= -\frac{id_2}{8M_N} \mathrm{Tr}(\bar{B}_{\bar{3}}[S^{\mu}, S^{\nu}]\tilde{f}_{\mu\nu}^+ B_{\bar{3}}) - \frac{id_3}{8M_N} \mathrm{Tr}(\bar{B}_{\bar{3}}[S^{\mu}, S^{\nu}]B_{\bar{3}}) \mathrm{Tr}(f_{\mu\nu}^+) \\ &- \frac{id_5}{4M_N} \mathrm{Tr}(\bar{B}_{\bar{6}}[S^{\mu}, S^{\nu}]\tilde{f}_{\mu\nu}^+ B_{\bar{6}}) - \frac{id_6}{4M_N} \mathrm{Tr}(\bar{B}_{\bar{6}}[S^{\mu}, S^{\nu}]B_{\bar{6}}) \mathrm{Tr}(f_{\mu\nu}^+) \\ &- \frac{id_8}{2M_N} \mathrm{Tr}(\bar{B}_{\bar{6}^*}^{\mu} \tilde{f}_{\mu\nu}^+ B_{\bar{6}^*}^{\mu}) - \frac{id_9}{2M_N} \mathrm{Tr}(\bar{B}_{\bar{6}^*}^{\mu} B_{\bar{6}^*}^{\mu}) \mathrm{Tr}(f_{\mu\nu}^+) \\ &- \frac{2if_2}{M_N} \mathrm{Tr}(\bar{B}_{\bar{3}} \tilde{f}_{\mu\nu}^+ [S^{\mu}, S^{\nu}]B_{\bar{6}}) - i\frac{f_4}{2M_N} \mathrm{Tr}(\bar{B}_{\bar{6}}^{*\mu} \tilde{f}_{\mu\nu}^+ S^{\nu} B_{\bar{3}}) \\ &- i\frac{f_3}{2M_N} \mathrm{Tr}(\bar{B}_{\bar{6}}^{*\mu} \tilde{f}_{\mu\nu}^+ S^{\nu} B_{\bar{6}}) - i\frac{\tilde{f}_3}{2M_N} \mathrm{Tr}(\bar{B}_{\bar{6}}^{*\mu} S^{\nu} B_{\bar{6}}) \mathrm{Tr}(f_{\mu\nu}^+) + \mathrm{H.c..} \end{aligned}$$

✓ 3
$$\otimes \overline{3} = 1 \oplus 8$$
 and 6 $\otimes \overline{6} = 1 \oplus 8 \oplus 27$.
• $d_{2,5,8}$: 8 $\otimes 8 \rightarrow 1$, $d_{3,4,9}$: 1 $\otimes 1 \rightarrow 1$

 $\checkmark 3 \otimes 6 = 8 \oplus 10$

• only couples with $\tilde{f}^+_{\mu\nu}$

• The leading order transition $B_6/B^\mu_{6^*}\to B_{\bar 3}\gamma$ arises from the the dynamics of the light quark sector.

✓ the $\mathcal{O}(p^2)$ Lagrangians with χ_+ $Tr(\bar{B}_{\bar{3}}\chi_+B_6)$ → $\mathcal{O}(p^2)$ radiative decay amplitudes.

 $\mathcal{O}(p^2)$ Lagrangian

$$\mathcal{L}_{B\gamma}^{(2)} = \begin{bmatrix} -\frac{id_2}{8M_N} \operatorname{Tr}(\bar{B}_{\bar{3}}[S^{\mu}, S^{\nu}]\tilde{f}_{\mu\nu}^+ B_{\bar{3}}) - \frac{id_3}{8M_N} \operatorname{Tr}(\bar{B}_{\bar{3}}[S^{\mu}, S^{\nu}]B_{\bar{3}}) \operatorname{Tr}(f_{\mu\nu}^+) \\ -\frac{id_5}{4M_N} \operatorname{Tr}(\bar{B}_{\bar{6}}[S^{\mu}, S^{\nu}]\tilde{f}_{\mu\nu}^+ B_{\bar{6}}) - \frac{id_6}{4M_N} \operatorname{Tr}(\bar{B}_{\bar{6}}[S^{\mu}, S^{\nu}]B_{\bar{6}}) \operatorname{Tr}(f_{\mu\nu}^+) \\ -\frac{id_8}{2M_N} \operatorname{Tr}(\bar{B}_{\bar{6}^*}\tilde{f}_{\mu\nu}^+ B_{\bar{6}^*}^6) - \frac{id_9}{2M_N} \operatorname{Tr}(\bar{B}_{\bar{6}^*}^{\mu} B_{\bar{6}^*}^6) \operatorname{Tr}(f_{\mu\nu}^+) \\ -\frac{2if_2}{M_N} \operatorname{Tr}(\bar{B}_{\bar{3}}\tilde{f}_{\mu\nu}^+ [S^{\mu}, S^{\nu}]B_{\bar{6}}) - i\frac{f_4}{2M_N} \operatorname{Tr}(\bar{B}_{\bar{6}}^{\mu\mu} \tilde{f}_{\mu\nu}^+ S^{\nu} B_{\bar{3}}) \\ -i\frac{f_3}{2M_N} \operatorname{Tr}(\bar{B}_{\bar{6}}^{\mu} \tilde{f}_{\mu\nu}^+ S^{\nu} B_{\bar{6}}) - i\frac{f_3}{2M_N} \operatorname{Tr}(\bar{B}_{\bar{6}}^{\mu\mu} S^{\nu\nu} B_{\bar{6}}) \operatorname{Tr}(f_{\mu\nu}^+) + \mathrm{H.c..} \\ 3 \otimes \bar{3} = 1 \oplus 8 \text{ and } 6 \otimes \bar{6} = 1 \oplus 8 \oplus 27. \end{aligned}$$

13 • $d_{2.5.8}: 8 \otimes 8 \to 1, \ d_{3.4.9}: 1 \otimes 1 \to 1$

 $\checkmark 3 \otimes 6 = 8 \oplus 10$

• only couples with $\tilde{f}^+_{\mu\nu}$

• The leading order transition $B_6/B^{\mu}_{6^*} o B_{ar{3}}\gamma$ arises from the the dynamics of the light quark sector.

✓ the $\mathcal{O}(p^2)$ Lagrangians with χ_+ $Tr(\bar{B}_{\bar{3}}\chi_+B_6)$ → $\mathcal{O}(p^2)$ radiative decay amplitudes.

$\mathcal{O}(p^2)$ Lagrangian

The double π vertex: contribute through the $\mathcal{O}(p^4)$ loop diagrams.

For the magnetic moments:

$$\mathcal{L}_{MB}^{(2)} = \frac{d_1}{2M_N} \operatorname{Tr}(\bar{B}_{\bar{3}}[S^{\mu}, S^{\nu}][u_{\mu}, u_{\nu}]B_{\bar{3}}) + \frac{d_4}{M_N} \operatorname{Tr}(\bar{B}_6[S^{\mu}, S^{\nu}][u_{\mu}, u_{\nu}]B_6) \\ + \frac{d_7}{M_N} \operatorname{Tr}(\bar{B}_{6*}^{\mu}[u_{\mu}, u_{\nu}]B_{6*}^{\nu}).$$

For the radiative transition:

$$\begin{aligned} \mathcal{L}_{B\phi\phi}^{(2)} &= \frac{a_1}{M_N} \mathrm{Tr}(\bar{B}_{\bar{3}}[S^{\mu}, S^{\nu}][u_{\mu}, u_{\nu}]B_6) + \frac{a_2}{M_N} \mathrm{Tr}(\bar{B}_{\bar{3}ab}[S^{\mu}, S^{\nu}]u_{i\mu}^b u_{j\nu}^a B_6^{ij}) \\ &+ \frac{a_3}{M_N} \mathrm{Tr}(\bar{B}_{\bar{3}}S^{\mu}[u_{\mu}, u_{\nu}]B_{6^*}^{\nu}) + \frac{a_4}{M_N} \mathrm{Tr}(\bar{B}_{\bar{3}ab}S^{\mu}u_{i\mu}^b u_{j\nu}^a B_{6^*}^{\nu ij}) \\ &+ \frac{a_5}{M_N} \mathrm{Tr}(\bar{B}_6S^{\mu}[u_{\mu}, u_{\nu}]B_{6^*}^{\nu}) + \mathrm{H.c..} \end{aligned}$$

✓ $\operatorname{Tr}(\bar{B}_{\bar{3}}[S^{\mu}, S^{\nu}]\{u_{\mu}, u_{\nu}\}B_{6})$ vanishes due to the antisymmetry of the Lorentz indices μ and ν .

(C)

$\mathcal{O}(p^3)$ Lagrangian

The Lagrangian at $\mathcal{O}(p^3)$ contributes through the $\mathcal{O}(p^3)$ diagrams.

$$\begin{split} \mathcal{L}_{B\gamma}^{(3)} &= \frac{n}{8M_N^2 M_6} \text{Tr}(\bar{\psi}_{\bar{3}} \nabla_{\lambda} \tilde{f}^+_{\mu\nu} \sigma^{\mu\nu} D^{\lambda} \psi_6) + \frac{n_1}{8M_N^2 M_{6*}} \text{Tr}(\bar{\psi}_{\bar{3}} \nabla_{\lambda} \tilde{f}^+_{\mu\nu} \gamma^{\lambda} \gamma_5 i D^{\mu} \psi_{6*}^{\nu}) \\ &+ \frac{n_2}{8M_N^2 M_{6*}} \text{Tr}(\bar{\psi}_{\bar{3}} \nabla_{\lambda} \tilde{f}^+_{\mu\nu} \gamma^{\mu} \gamma_5 i D^{\lambda} \psi_{6*}^{\nu}) + \frac{m_1}{8M_N^2 M_{6*}} \text{Tr}(\bar{\psi}_6 \nabla_{\lambda} \tilde{f}^+_{\mu\nu} \gamma^{\lambda} \gamma_5 i D^{\mu} \psi_{6*}^{\nu}) \\ &+ \frac{m_2}{8M_N^2 M_{6*}} \text{Tr}(\bar{\psi}_6 \nabla_{\lambda} \tilde{f}^+_{\mu\nu} \gamma^{\mu} \gamma_5 i D^{\lambda} \psi_{6*}^{\nu}) + \frac{\tilde{m}_1}{8M_N^2 M_{6*}} \text{Tr}[\bar{\psi}_6 \nabla_{\lambda} \text{Tr}(f^+_{\mu\nu}) \gamma^{\lambda} \gamma_5 i D^{\mu} \psi_{6*}^{\nu}] \\ &+ \frac{\tilde{m}_2}{8M_N^2 M_{6*}} \text{Tr}[\bar{\psi}_6 \text{Tr}(\nabla_{\lambda} f^+_{\mu\nu}) \gamma^{\mu} \gamma_5 i D^{\lambda} \psi_{6*}^{\nu}] + \text{H.c..} \end{split}$$

 \checkmark $n, n_2, m_2, \text{ and } \tilde{m}_2 \text{ terms contribute to the } G_1 \longrightarrow$ Important for M1 transition

- cancel the divergences of the $\mathcal{O}(p^3)$ loop diagrams.
- be absorbed into the lower order f_{2-4} and \tilde{f}_3 terms
- ✓ The n_1, m_1 and \tilde{m}_1 terms contribute to $G_2 \longrightarrow E2$ transition

Building Block at $\mathcal{O}(p^4)$

TABLE II: The possible flavor structures constructed by two baryons in the $\mathcal{O}(p^4)$ Lagrangians.

Group representation	$3\otimes 6 \rightarrow 8$	$3\otimes 6 \rightarrow 10$	$6\otimes 6 \to 1$	$6\otimes 6 \rightarrow 8$	$6\otimes 6 \rightarrow 27$
Flavor structure	$\bar{B}^{ab}_{\bar{3}}B_{6ca}$	$ar{B}^{ab}_{ar{3}}B_{6ij}$	$\operatorname{Tr}(\bar{B}_6B_6)$	$\bar{B}_6^{ab}B_{6ca}$	$ar{B}^{ab}_{6}B_{6ij}$

TABLE III: The possible flavor structures constructed by χ_+ , $\tilde{f}_{\mu\nu}$ or $\text{Tr}(f_{\mu\nu})$ for the $\mathcal{O}(p^4)$ Lagrangians. These structures combine with those in Table II to form the Lagrangians according to group representations: $\bar{8} \otimes 8 \to 1$, $\bar{10} \otimes 10 \to 1$, $27 \otimes 27 \to 1$ and $1 \otimes 1 \to 1$. The three { } in the third or sixth rows correspond to \mathcal{L}_{36} , \mathcal{L}_{36*} and \mathcal{L}_{66*} , respectively. The "ab. f_i " means that the LEC can be absorbed by f_i . And {-} represents that the corresponding group representation does not exist.

Group representation	$1\otimes 1 \to 1$	$1\otimes 8 \rightarrow 8$	$8\otimes 1 \rightarrow 8$	$8 \times 8 \rightarrow 1$
Flavor structure	$\operatorname{Tr}(\chi_+)\operatorname{Tr}(f^+_{\mu\nu})$	$\operatorname{Tr}(\chi_+) \tilde{f}^+_{\mu u}$	$\chi_+ \mathrm{Tr}(\tilde{f}^+_{\mu\nu})$	$\operatorname{Tr}(\chi_+ \tilde{f}^+_{\mu u})$
LECs	$\{-\}\{-\}\{ab.\tilde{f}_3\}$	${ab. f_2}{ab. f_3}{ab. f_4}$	${c_1}{h_1}{l_1}$	$\{-\}\{-\}\{{\rm ab}. ilde{f}_3\}$
Group representation	$8\otimes 8\to 8_1$	$8\otimes 8\to 8_2$	$8\otimes 8\to 27$	$8\otimes 8 ightarrow 1\overline{0}$
Flavor structure	$[\chi_+, ilde{f}^+_{\mu u}]$	$\{\chi_+, ilde{f}^+_{\mu u}\}$	$\{\chi_+, \tilde{f}^+_{\mu\nu}\}^{ij}_{ab}$	$(\chi_+)^i_a (ilde{f}^+_{\mu u})^j_b$
LECs	vanishing	${c_2}{h_2}{ab.l_1}$	$\{-\}\{-\}\{l_2\}$	${c_3}{h_3}{-}$

$\mathcal{O}(p^4)$ Lagrangian

The Lagrangian at $\mathcal{O}(p^4)$ contributes to the $\mathcal{O}(p^4)$ tree diagram.

For magnetic moments:

$$\mathcal{L}_{B\gamma}^{(4)} = -\frac{is_2}{4M_N} \operatorname{Tr}(\bar{B}_6[S^{\mu}, S^{\nu}]\chi_+ B_6) \operatorname{Tr}(f_{\mu\nu}^+) - \frac{is_3}{4m_N} \operatorname{Tr}(\bar{B}_6^{ab}[S^{\mu}, S^{\nu}]\{\chi_+, \tilde{f}_{\mu\nu}^+\}_{ab}^{ij} B_{6ij}^{\nu}) \\ + \frac{is_7}{4m_N} \operatorname{Tr}(\bar{B}_{6^*}^{\mu}\chi_+ B_{6^*}^{\nu}) \operatorname{Tr}(\tilde{f}_{\mu\nu}^+) + \frac{is_8}{4m_N} \operatorname{Tr}(\bar{B}_{6^*}^{\mu}\{\chi_+, \tilde{f}_{\mu\nu}^+\}_{ab}^{ij} B_{6^*}^{\nu}).$$

For the radiative decay:

$$\mathcal{L}_{B\gamma}^{(4)} = \frac{c_1}{8m_N} \operatorname{Tr}(\bar{\psi}_{\bar{3}}\chi_{+}\sigma_{\mu\nu}\psi_{6}) \operatorname{Tr}(f_{\mu\nu}^{+}) + \frac{c_2}{8m_N} \operatorname{Tr}(\bar{\psi}_{\bar{3}}\{\chi_{+}, \tilde{f}_{\mu\nu}^{+}\}\sigma_{\mu\nu}\psi_{6}) + \frac{c_3}{8m_N} \operatorname{Tr}(\bar{\psi}_{\bar{3}}^{ab}\chi_{a+}^{i}\tilde{f}_{b\mu\nu}^{j+}\sigma_{\mu\nu}\psi_{6ij}) \\ - \frac{ih_1}{8m_N} \operatorname{Tr}(\bar{\psi}_{\bar{3}}\chi_{+}\gamma_{\mu}\gamma_{5}\psi_{6*}^{\nu}) \operatorname{Tr}(f_{\mu\nu}^{+}) - \frac{ih_2}{8m_N} \operatorname{Tr}(\bar{\psi}_{\bar{3}}\{\chi_{+}, \tilde{f}_{\mu\nu}^{+}\}\gamma_{\mu}\gamma_{5}\psi_{6*}^{\nu}) - \frac{ih_3}{8m_N} \operatorname{Tr}(\bar{\psi}_{\bar{3}}^{ab}\chi_{a+}^{i}\tilde{f}_{b\mu\nu}^{j+}\gamma_{\mu}\gamma_{5}\psi_{6*ij}^{\nu}) \\ - \frac{il_1}{8m_N} \operatorname{Tr}(\bar{\psi}_{6}\chi_{+}\gamma_{\mu}\gamma_{5}\psi_{6*}^{\nu}) \operatorname{Tr}(f_{\mu\nu}^{+}) - \frac{il_2}{8m_N} \operatorname{Tr}(\bar{\psi}_{6}^{ab}\{\chi_{+}\tilde{f}_{\mu\nu}^{+}\}_{ab}^{ij}\gamma_{\mu}\gamma_{5}\psi_{6*ij}^{\nu}) + \mathrm{H.c.}.$$

✓ In the U-spin transformation, $d \leftrightarrow s, \, \bar{d} \leftrightarrow \bar{s}$

$$\pi^{\pm} \leftrightarrow K^{\pm} \quad K^0 \leftrightarrow \bar{K}^0$$

 $\Lambda_c^+ \leftrightarrow \Xi_c^+, \, \Xi_c^0 \leftrightarrow \Xi_c^0, \, \Omega_c^0 \leftrightarrow \Sigma_c^0, \, \Sigma_c^+ \leftrightarrow \Xi_c^{'+} \text{ and } \Xi_c^{'0} \leftrightarrow \Xi_c^{'0}$

- $\checkmark \ \text{In the neutral decays} \ \ \Xi_c^{'0} \to \Xi_c^0 \gamma \ \ \text{and} \ \ \Xi_c^{*0} \to \Xi_c^0 \gamma$
- The contributions from s and d cancel out in the SU(3) flavor symmetry
- •Their decay widths totally arise from the U-spin symmetry breaking effects up to NNLO

✓ Up to NLO

$$\begin{array}{ll}
G_{M1}(\Sigma_{c}^{*++} \to \Sigma_{c}^{++}\gamma) + G_{M1}(\Sigma_{c}^{*0} \to \Sigma_{c}^{0}\gamma) &= 2G_{M1}(\Sigma_{c}^{*+} \to \Sigma_{c}^{+}\gamma). \quad \text{Holds up to NNLO} \\
G_{M1}(\Sigma_{c}^{*++} \to \Sigma_{c}^{++}\gamma) + 2G_{M1}(\Xi_{c}^{*0} \to \Xi_{c}^{'0}\gamma) &= G_{M1}(\Sigma_{c}^{*0} \to \Sigma_{c}^{0}\gamma) + 2G_{M1}(\Xi_{c}^{*+} \to \Xi_{c}^{'+}\gamma) \\
&= G_{M1}(\Omega_{c}^{*0} \to \Omega_{c}^{0}\gamma) + 2G_{M1}(\Sigma_{c}^{*+} \to \Sigma_{c}^{+}).
\end{array}$$

• The superfield:

$$egin{aligned} \psi^{\mu} &= B^{\mu}_{6^{*}} - \sqrt{rac{1}{3}}(\gamma^{\mu} + v^{\mu})\gamma_{5}B_{6} \ ar{\psi}_{\mu} &= ar{B}^{\mu}_{6^{*}} + \sqrt{rac{1}{3}}ar{B}_{6}\gamma_{5}(\gamma_{\mu} + v_{\mu}), \end{aligned}$$

Cheng, at.al PRD 49, 5857; Wise PRD 45, R2188;

• The Lagrangians in the heavy quark limit:

$$\begin{aligned} \mathcal{L}_{HQSS}^{(2)} &= i \frac{\kappa_1}{M_N} \text{Tr}(\bar{\psi}^{\mu} \tilde{f}^+_{\mu\nu} \psi^{\nu}) + \frac{\kappa_2}{M_N} \epsilon_{\mu\nu\alpha\beta} \text{Tr}(\bar{\psi}^{\mu} \tilde{f}^{\alpha\beta} v^{\nu} B_{\bar{3}}), \\ \mathcal{L}_{QB}^{(2)} &= \frac{\kappa_3}{M_N} \text{Tr}(\bar{\psi}^{\lambda} \sigma_{\mu\nu} \psi_{\lambda}) \text{Tr}(f^{\mu\nu+}), \\ d_5 &= -\frac{8}{3} \kappa_1, \ d_8 &= -2\kappa_1, \ f_3 &= 4\sqrt{\frac{1}{3}} \kappa_1, \\ f_4 &= 8\kappa_2, \ f_2 &= \frac{1}{\sqrt{3}} \kappa_2, \\ d_6 &= \frac{8}{3} \kappa_3, \ d_9 &= -4\kappa_3, \ \tilde{f}_3 &= -\frac{16}{\sqrt{3}} \kappa_3. \end{aligned}$$

LECs: Heavy quark symmetry

Double π vertex

$$\mathcal{L}_{B\phi\phi}^{(2)} = \frac{\kappa_4}{M_N} \operatorname{Tr}(\bar{\psi}^{\mu}[u_{\mu}, u_{\nu}]\psi^{\nu}) + \frac{i\kappa_5}{M_N} \epsilon^{\sigma\mu\nu\rho} \operatorname{Tr}(\bar{B}_{\bar{3}}[u_{\mu}, u_{\nu}]v_{\rho}\psi_{\sigma}) + \frac{i\kappa_6}{M_N} \operatorname{Tr}(\bar{B}_{\bar{3}ab} \epsilon^{\sigma\mu\nu\rho} u^b_{i\mu} u^a_{j\nu} v_{\rho} \psi^{ij}_{\sigma})$$

$$a_{5} = -2\sqrt{\frac{1}{3}}\kappa_{4}, \quad d_{4} = \frac{2}{3}\kappa_{4}, \quad d_{7} = \kappa_{4},$$

$$a_{3} = 2\kappa_{5}, \quad a_{1} = 4\sqrt{\frac{1}{3}}\kappa_{5},$$

$$a_{4} = 4\kappa_{6}, \quad a_{2} = 2\sqrt{\frac{1}{3}}\kappa_{6}.$$

The $\mathcal{O}(p^4)$ Lagrangian reads

$$\mathcal{L}_{B\gamma}^{(4)} = \frac{i\kappa_7}{m_N} \text{Tr}(\bar{\psi}_{\mu}^{ab} \{\chi_+, \tilde{f}_{\mu\nu}^+\}_{ab}^{ij} \psi_{ij}^{\nu}) + \frac{\kappa_8}{m_N} \text{Tr}(\bar{\psi}^{\lambda} \chi_+ \sigma^{\mu\nu} \psi_{\lambda}) \text{Tr}(f_{\mu\nu}^+),$$
$$l_2 = 8\sqrt{\frac{1}{3}}\kappa_7, \ s_3 = -\frac{8}{3}\kappa_7, \ s_8 = 4\kappa_7,$$
$$l_1 = -32\sqrt{\frac{1}{3}}\kappa_8, \ s_2 = \frac{8}{3}\kappa_8, \ s_7 = 8\kappa_8.$$

The LECs are reduced to κ_{1-8} , n_1 , m_1 and \tilde{m}_1 in the heavy quark limit.

Lattice QCD

• The magnetic moments from the Lattice QCD.

$\mu^{\ddagger}_{\Xi^+_c}$	$\mu_{\Xi^0_c}$	$\mu_{\Xi_c^{'+}}$	$\mu_{\Xi_c^{\prime 0}}$	$\mu^{\ddagger}_{\Xi_c^{\prime+}\to\Xi_c^+\gamma}$	$\mu_{\Xi_c^{\prime 0} \to \Xi_c^0 \gamma}$
0.235(25)	0.192(17)	0.315(141)	-0.599(71)	0.729(103)	0.009(13)
$\mu^{\ddagger}_{\Sigma^{++}_c}$	$\mu_{\Sigma^0_c}$	$\mu^{\ddagger}_{\Omega^0_c}$	$\mu^{\ddagger}_{\Omega^{\ast 0}_{c}}$	$G_{M1}(\Omega_c^{*0}$	$^{0} ightarrow\Omega_{c}^{0}\gamma)$
1.499(202)	-0.875(103)	-0.688(31)	-0.730(23)	$G^q_{M1}(0) = 0.671$	$G^c_{M1}(0) = 0.145$

H. Bahtiyar et al. PLB 747, 281 K.U. Can et al. PRD 92,114515 K.U. Can et al. JHEP 1405, 125 H. Bahtiyar et al. PLB 772, 121

- Many common LECs for the magnetic moments and the radiative decay amplitudes.
- The magnetic moments from the Lattice QCD \longrightarrow LECs \longrightarrow Γ

- $B_6 \rightarrow B_{\bar{3}}\gamma$: one unknown LECs κ_2 up to NLO. $\mu(\Xi_c^{'+} \rightarrow \Xi_c^+\gamma)^{'*}$
- $B^{\mu}_{6^*}
 ightarrow B_{ar{3}} \gamma : \kappa_2$ and n_1 (contribution $\propto M' M pprox 0$).
- $\Gamma(\Xi_c^{'0} \to \Xi_c^0 \gamma)$ and $\Gamma(\Xi_c^{*0} \to \Xi_c^0 \gamma)$: loops (a) and (b). the input
- $\mu = \mu^q + \mu^Q$, $\mathcal{M} = \mathcal{M}^q + \mathcal{M}^Q$ \longleftarrow $\tilde{f}^+_{\mu\nu}$ and $\mathrm{Tr}(f^+_{\mu\nu})$
- $B_6 \rightarrow B_{\bar{3}}\gamma$: only light quarks contribute.

Channel	$\mathcal{O}(p)$	$\mu \ (\mu \ \mathcal{O}(p^2)$	(u_N) Total	Γ (keV)	Channel	$\mathcal{O}(p)$	μ $\mathcal{O}(p^2)$	Total	$\Gamma({ m keV})$
$\Sigma_c^+ \to \Lambda_c^+ \gamma$	-2.70	1.32	-1.38 ± 0.02	65.6 ± 2	$\Sigma_b^0 \to \Lambda_b^0 \gamma$	-2.70	1.33	-1.37	108.0 ± 4
$\Xi_c^{'+}\to \Xi_c^+\gamma$	-2.70	1.97	0.73^{\ddagger}	5.43 ± 0.33	$\Xi_b^{'0}\to \Xi_b^0\gamma$	-2.70	1.95	-0.75	13.0 ± 0.8
$\Xi_c^{\prime 0} \to \Xi_c^0 \gamma$	0	0.22	0.22	0.46	$\Xi_b^{'-}\to \Xi_b^-\gamma$	0	0.21	0.21	1.0
$\Sigma_c^{*+} \to \Lambda_c^+ \gamma$	3.91	-1.91	2.00	161.6 ± 5	$\Sigma_b^{*0} \to \Lambda_b^0 \gamma$	3.85	-1.89	1.96	142.1 ± 5
$\Xi_c^{*+} \to \Xi_c^+ \gamma$	3.88	-2.83	1.05	21.6 ± 1	$\Xi_b^{*0}\to \Xi_b^0\gamma$	3.84	-2.78	1.06	17.2 ± 0.1
$\Xi_c^{*0}\to \Xi_c^{'0}\gamma$	0	-0.31	-0.31	1.84	${\Xi_b^*}^- \to \Xi_b^{'-} \gamma$	0	-0.30	-0.30	1.4

- For the transition $B_{6^*}^{\mu} \to B_6 \gamma$,
- E2 transition $\propto M' M \approx 0$
- In the heavy quark limit, only the M1 transition contribute.

- The errors:
- ✓ lattice QCD simulations. → errors on κ_i
- \checkmark the error of the order 10% for heavy quark symmetry \longrightarrow errors on d_i

The convergence works well.

	$\mathcal{O}(p)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^3)$	Light	Heavy	Total	lattice QCD
$\mu^{\ddagger}_{\Sigma^{++}_c}$	1.91	-0.74	0.39	1.57	-0.07	1.50 ± 0.32	1.499(202)
$\mu_{\Sigma_c^+}$	0.48	-0.26	0.12	0.33	-0.07	0.26 ± 0.09	
$\mu_{\Sigma^0_c}$	-0.96	0.22	-0.16	-0.90	-0.07	-0.97 ± 0.14	-0.875(103)
$\mu^{\ddagger}_{\Xi^{+'}_c}$	0.48	-0.11	0.01	0.39	-0.07	0.32 ± 0.09	0.315(141)
$\mu_{\Xi^0_c}$	-0.96	0.37	-0.19	-0.77	-0.07	-0.84 ± 0.17	-0.599(71)
$\mu^{\ddagger}_{\Omega^0_c}$	-0.96	0.52	-0.19	-0.62	-0.07	-0.69 ± 0.19	-0.688(31)
$\mu_{\Sigma_c^{*}^{*}^{++}}$	2.87	-1.11	0.59	2.35	0.21	2.56 ± 0.46	
$\mu_{\Sigma_c^{*+}}$	0.72	-0.39	0.17	0.50	0.21	0.71 ± 0.13	
$\mu_{\Sigma_c^{*0}}$	-1.43	0.32	-0.24	-1.35	0.21	-1.14 ± 0.20	
$\mu_{\Xi_c^{*+}}$	0.72	-0.16	0.02	0.58	0.21	0.79 ± 0.12	
$\mu_{\Xi_c^{*0}}$	-1.43	0.55	-0.28	-1.16	0.21	-0.95 ± 0.24	
$\mu^{\ddagger}_{\Omega^{*0}_c}$	-1.43	0.78	-0.29	-0.94	0.21	-0.73 ± 0.28	-0.730(23)

JAEA

The convergence works well.

Channel					G_{M1}				$\Gamma(k_0 V)$
	$\mathcal{O}(p)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^3)$	Light	Heavy	Total	lattice QCD [6]	$\mu_{6^* \rightarrow 6}(\mu_N)$	1 (KeV)
$\Sigma_c^{*++} \to \Sigma_c^{++} \gamma$	4.36	-1.69	0.90	3.57	-0.15	3.43 ± 0.7		1.07 ± 0.23	$1.20{\pm}0.6$
$\Sigma_c^{*+} \to \Sigma_c^+ \gamma$	1.09	-0.60	0.27	0.76	-0.15	0.61 ± 0.2		0.19 ± 0.06	0.04 ± 0.03
$\Sigma_c^{*0} \to \Sigma_c^0 \gamma$	-2.18	0.49	-0.37	-2.06	-0.15	-2.20 ± 0.3		-0.69 ± 0.1	0.49 ± 0.1
$\Xi_c^{*+} \to \Xi_c^{+'} \gamma$	1.15	-0.26	0.04	0.92	-0.15	0.77 ± 0.2		0.23 ± 0.06	0.07 ± 0.03
$\Xi_c^{*0}\to \Xi_c^{0'}\gamma$	-2.29	0.89	-0.45	-1.85	-0.15	-2.00 ± 0.4		-0.59 ± 0.12	0.42 ± 0.16
$\Omega_c^{*0} \to \Omega_c^0 \gamma$	-2.39	1.31	-0.48	-1.56	-0.15	$-1.71 {\pm} 0.5$	-0.816	-0.49 ± 0.14	0.32 ± 0.20

	Light	Heavy	Total		Light	Heavy	Total
$\mu_{\Sigma_b^+}$	1.57	-0.02	1.55	$\mu_{\Sigma_b^{*+}}$	2.35	-0.06	2.29
$\mu_{\Sigma_b^0}$	0.33	-0.02	0.31	$\mu_{\Sigma_b^{*0}}$	0.50	-0.06	0.44
$\mu_{\Sigma_b^-}$	-0.90	-0.02	-0.92	$\mu_{\Sigma_b^*}-$	-1.35	-0.06	-1.41
$\mu_{\Xi_b^{\prime 0}}$	0.39	-0.02	0.37	$\mu_{\Xi_b^{*0}}$	0.58	-0.06	0.51
$\mu_{\Xi_b^{'-}}$	-0.77	-0.02	-0.79	$\mu_{\Xi_b^*-}$	-1.16	-0.06	-1.22
$\mu_{\Omega_b^-}$	-0.62	-0.02	-0.64	$\mu_{\Omega_b^*}-$	-0.94	-0.06	-1.00

TABLE XII: The transition magnetic moment and the decay width for the transition $B_{6^*}^{\mu} \to B_6 \gamma$.

$\mu_{6^* \to 6}$	Light	Heavy	Total	$\Gamma(\mathrm{eV})$
$\Sigma_b^{*+} \to \Sigma_b^+ \gamma$	1.11	0.06	1.17 ± 0.22	± 20
$\Sigma_b^{*0} \to \Sigma_b^0 \gamma$	0.24	0.06	0.30 ± 0.06	3.0 ± 1
$\Sigma_b^{*-}\to \Sigma_b^- \gamma$	-0.63	0.06	-0.58 ± 0.1	10.3 ± 4
$\Xi_b^{*0}\to \Xi_b^{'0}\gamma$	0.27	0.06	0.33 ± 0.06	1.5 ± 0.5
$\Xi_b^{*-}\to \Xi_b^{'-}\gamma$	-0.54	0.06	-0.49 ± 0.1	8.2 ± 4
$\Omega_b^{*-}\to\Omega_b^-\gamma$	-0.44	0.06	-0.38 ± 0.13	30.6 ± 26

TABLE XIII: The decay widths of the charmed baryon transitions from different frameworks, the lattice QCD [6, 7], the extent bag model [20], the light cone QCD sum rule [53–55], the heavy hadron chiral perturbation theory (HHChPT) [11, 56], the HBChPT [13] and the quark model [23].

$\Gamma ~({\rm keV})$	This work	[6, 7]	[20]	[53-55]	[56]	[11]	[13]	[23]
$\Sigma_c^+ \to \Lambda_c^+ \gamma$	65.6		74.1	50(17)	46		164	60.7 ± 1.5
$\Xi_c^{'+}\to \Xi_c^+ \gamma$	5.43	5.468(1.500)	17.3	8.5(2.5)	1.3		54.3	12.7 ± 1.5
$\Xi_c^{'0}\to \Xi_c^0\gamma$	0.46	0.002(4)	0.185	0.27(6)	0.04	1.2 ± 0.7	0.02	0.17 ± 0.02
$\Sigma_c^{*+} \to \Lambda_c^+ \gamma$	161.8		190	130(45)			893	151 ± 4
$\Xi_c^{*+}\to \Xi_c^+\gamma$	21.6		72.7	52(25)			502	54 ± 3
$\Xi_c^{*0}\to \Xi_c^0\gamma$	1.84		0.745	0.66(32)		5.1 ± 2.7	0.36	0.68 ± 0.04
$\Sigma_c^{*++} \to \Sigma_c^{++} \gamma$	1.20		1.96	2.65(1.20)			11.6	
$\Sigma_c^{*+} \to \Sigma_c^+ \gamma$	0.04		0.011	0.46(16)			0.85	0.14 ± 0.004
$\Sigma_c^{*0}\to \Sigma_c^0 \gamma$	0.49		1.41	0.08(3)			2.92	
$\Xi_c^{*+}\to \Xi_c^{'+}\gamma$	0.07		0.063	0.274			1.10	
$\Xi_c^{*0}\to \Xi_c^{'0}\gamma$	0.42		1.33	2.14			3.83	
$\Omega_c^{*0} \to \Omega_c^0 \gamma$	0.32	0.074(8)	1.13	0.932			4.82	

[6,7] PLB 747, 281, PLB 772, 121; [[20] arXiv:1803.01809; [[53,54,55] PRD 79, 056005, EPJC 75, 14,PRD 93, 056007; [11,56] PRD 79, 056005, PRD49, 5857;

[13] PRD 92, 054017 (2015); [23] PRD 60, 094002;

$\Gamma \ (\rm keV)$	This work	[20]	[53 - 55]	[11]	[13]
$\Sigma_b^0 \to \Lambda_b^0 \gamma$	108.0	116	152(60)		288
$\Xi_b^{'0}\to \Xi_b^0 \gamma$	13.0	36.4	47(21)		
$\Xi_b^{'-}\to \Xi_b^-\gamma$	1.0	0.357	3.3(1.3)	3.1 ± 1.8	
$\Sigma_b^0 \to \Lambda_b^{*0} \gamma$	142.1	158	114 (45)		435
$\Xi_b^{*0}\to \Xi_b^0 \gamma$	17.2	55.3	135(65)		136
$\Xi_b^{*-}\to \Xi_b^-\gamma$	1.4	0.536	1.50(75)	4.2 ± 2.4	1.87
$\Sigma_b^{*+} \to \Sigma_b^+ \gamma$	0.05	0.11	0.46(22)		0.6
$\Sigma_b^{*0} \to \Sigma_b^0 \gamma$	3.0×10^{-3}	8.3×10^{-3}	0.028(16)		0.05
$\Sigma_b^{*-}\to \Sigma_b^- \gamma$	0.013	0.0192	0.11(6)		0.08
$\Xi_b^{*0}\to \Xi_b^{'0}\gamma$	1.5×10^{-3}	0.0105	0.131		
$\Xi_b^{*-}\to \Xi_b^{'-}\gamma$	8.2×10^{-3}	0.0136	0.303		
$\Omega_b^{*-} \to \Omega_b^- \gamma$	0.031	9.1×10^{-3}	0.092		

TABLE XIV: The decay widths of the bottom baryon transitions from different frameworks, the extent bag model [20], the light cone QCD sum rule [53-55], the HHChPT [11] and the HBChPT [13].

[20] arXiv:1803.01809; [53,54,55] PRD 79, 056005, EPJC 75, 14,PRD 93, 056007; [11] PRD 79, 056005, PRD49, 5857; [13] PRD 92, 054017 (2015);

Summary

• The analytical expressions of the radiative decay amplitudes up to NNLO.

 $\checkmark B_6 \to B_{\bar{3}}\gamma, \ B_{6^*}^{\mu} \to B_{\bar{3}}\gamma \text{ and } B_{6^*}^{\mu} \to B_6\gamma$

• The numerical results up to NLO for

 $\checkmark \quad B_6 \to B_{\bar{3}}\gamma \text{ and } B^{\mu}_{6^*} \to B_{\bar{3}}\gamma$

- The numerical results up to NNLO for $\ B^{\mu}_{6^{*}} o B_{6} \gamma$
 - \checkmark The magnetic moments
 - ✓ The radiative decay width
- The electromagnetic properties of the other systems
 - ✓ The heavy meson
 - ✓ The exotic states
- The chiral extrapolations.

Thanks for your attention!

Backup slides

Building Block

	U	$D_{\mu}U$	χ	$D_{\mu}\chi$
Chial	$V_R U V_L^\dagger$	$V_R D_\mu U V_L^\dagger$	$V_R \chi V_L^\dagger$	$V_R D_\mu \chi V_L^\dagger$
$\mathcal{O}(p^n)$	0	1	2	3
P	U^{\dagger}	$(D^{\mu}U)^{\dagger}$	χ^\dagger	$(D^{\mu}\chi)^{\dagger}$
CC	U^T	$(D_{\mu}U)^{T}$	χ^T	$(D_\mu \chi)^T$
C	U^{\dagger}	$(D_{\mu}U)^{\dagger}$	χ^{\dagger}	$(D_\mu\chi)^\dagger$
	r_{μ}	l_{μ}	$f^R_{\mu u}$	$f^L_{\mu u}$
Chial	$V_R r_\mu V_R^\dagger + i V_R \partial_\mu V_R^\dagger$	$V_L l_\mu V_L^\dagger + i V_L \partial_\mu V_L^\dagger$	$V_R f^R_{\mu\nu} V^\dagger_R$	$V_L f^L_{\mu u} V^\dagger_L$
$\mathcal{O}(p^n)$	1	1	2	2
P	l^{μ}	r^{μ}	$f_L^{\mu u}$	$f_R^{\mu u}$
CC	$-l_{\mu}^{T}$	$-r_{\mu}^{T}$	$-(f^L_{\mu u})^T$	$-f^{RT}_{\mu u}$
C	r_{μ}	l_{μ}	$f^R_{\mu u}$	$f^L_{\mu\nu}$

Parity (P), charge conjugation (CC), conjugation (C)

Building Block

	$ u_{\mu}$	$ abla_{\mu}$	χ_+	χ_{-}	$f^+_{\mu\nu}$	$f^{\mu\nu}$	$D_{\mu}\Psi$
Chial	1	1	2	2	2	2	0
$\mathcal{O}(p^n)$	$-u^{\mu}$	$ abla^{\mu}$	χ_+	$-\chi_{-}$	$f^{+\mu\nu}$	$-f^{\mu\nu}$	D_{μ}
P CC	u_{μ}^{T}	$ abla_{\mu}^{T}$	χ^T_+	χ^T	$-f^{+T}_{\mu\nu}$	$-f_{\mu u}^{-T}$	$-D_{\mu}^{T}$
C	u^{\dagger}_{μ}	$ abla_{\mu}$	χ_+	$-\chi_{-}$	$f^+_{\mu\nu}$	$f^{\mu\nu}$	$-D_{\mu}$
	γ_5	γ_{μ}	$\gamma_{\mu}\gamma_{5}$	$\sigma^{\mu u}$	$g^{\mu u}$	$\epsilon^{\mu u ho\sigma}$	
Chial	$\left \begin{array}{c} \gamma_5 \end{array} \right $	γ_{μ} 0	$\gamma_{\mu}\gamma_{5}$	$\sigma^{\mu u}$ 0	$g^{\mu u}$ 0	$\epsilon^{\mu u ho\sigma}$	
Chial $\mathcal{O}(p^n)$	$\begin{vmatrix} \gamma_5 \\ 1 \\ -\gamma_5 \end{vmatrix}$	$egin{array}{c} \gamma_\mu \ 0 \ \gamma^\mu \end{array}$	$\gamma_{\mu}\gamma_{5}$ 0 $-\gamma_{\mu}\gamma_{5}$	$\sigma^{\mu u} \ 0 \ \sigma_{\mu u}$	$g^{\mu u}$ 0 $g_{\mu u}$	$\epsilon^{\mu\nu\rho\sigma}$ 0 $-\epsilon_{\mu\nu\rho\sigma}$	
Chial $\mathcal{O}(p^n)$ P CC	$egin{array}{ c } \gamma_5 \ 1 \ -\gamma_5 \ \gamma_5 \end{array}$	$egin{array}{c} \gamma_\mu \ 0 \ \gamma^\mu \ -\gamma_\mu \end{array}$	$egin{array}{c} \gamma_\mu\gamma_5 \ 0 \ -\gamma_\mu\gamma_5 \ \gamma_\mu\gamma_5 \end{array}$	$\sigma^{\mu\nu} \\ 0 \\ \sigma_{\mu\nu} \\ -\sigma^{\mu\nu}$	$g^{\mu u} \ 0 \ g_{\mu u} \ g^{\mu u}$	$\begin{aligned} \epsilon^{\mu\nu\rho\sigma} \\ 0 \\ -\epsilon_{\mu\nu\rho\sigma} \\ \epsilon^{\mu\nu\rho\sigma} \end{aligned}$	

Parity (P), charge conjugation (CC), conjugation (C)