$\Lambda_c \to \Sigma \pi \pi$ resonant decays in Belle data

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Manfred Berger

Stefan Meyer Institute for Subatomic Physics HEPHY

April 13, 2018

 $\begin{array}{c} {\sf Intoduction}\\ {\cal B}\\ {\sf Intermediate Resonances}\end{array}$

Introduction Belle

Physics of Λ_c

$\Lambda_{\rm c}^{\rm +} \ I(J^P) = 0(1/2)^+$

 $\begin{array}{l} \Gamma(\Lambda_c \to p^+ K^- \pi^+) / \Gamma_{total} \\ 5.84 \pm 0.27 \pm 0.23 \quad \text{BES3} \quad 2016 \\ 6.84 \pm 0.24^{+0.21}_{-0.27} \quad \text{Belle} \quad 2014 \\ \Gamma(\Lambda_c \to p^+ K^+ \pi^-) / \Gamma_{total} \ [10^{-3}] \\ 2.35 \pm 0.27 \pm 21 \quad \text{Belle} \quad 2016 \\ \Lambda_c \to K^+ \pi^+ p \pi^0, \, \text{s. f.} \ \Lambda_c \to \phi p \pi^0 \\ \text{arXiv:} 1707.00089 \quad \text{Belle} \quad 2017. \end{array}$

- Lightest charmed baryon
- Outstanding importance for understanding of higher resonances
- A lot of hadronic modes haven't been measured yet

イロン 不得 とくほ とくほ とうほう

Motivation: $\Sigma \pi$ Scattering Lengths

- Original Motivation: Measure the $\Sigma\pi$ scattering lengths based on "Cabibbo's method", T. Hyodo and M. Oka, Phys. Rev. C84, 035201 (2011)
- Further goals: Measure the $\mathcal{B}(\Sigma\pi\pi)$ relative to $pK^{-}\pi^{+}$.
- Further goals: int. resonances.

Visible decay modes at Belle:

$$\begin{array}{rcl} \Lambda_c & \rightarrow & \Sigma^+ \pi^- \pi^+ (4.57 \pm 0.29\%)^* \\ \Lambda_c & \rightarrow & \Sigma^0 \pi^+ \pi^0 (2.3 \pm 0.9\%)^* \\ \Lambda_c & \rightarrow & \Sigma^+ \pi^0 \pi^0 (\mathrm{unknown}) \end{array}$$

M. Berger, K. Suzuki, C. Schwanda

* C. Patrignani *et al.* (Particle Data Group), Chin. Phys. C, **40**, 100001 (2016).

 $\Lambda_c \to \Sigma \pi \pi$ resonant decays in Belle data

Intoduction

Intermediate Resonances

Introduction Belle

Motivation: $\Sigma \pi$ Scattering Lengths

Another Motivation

I=1 suppressed production of $\Lambda(1405)$ at low mass, $\Lambda(1670)$

K. Miyahara, T. Hyodo, E. Oset, Phys. Rev. C. 92, 055204 (2015)

M. Berger, K. Suzuki, C. Schwanda $\Lambda_c o \Sigma \pi \pi$ resonant decays in Belle data

Introduction Belle

Belle and B-Factories

Belle is the detector at the KEKB asymmetric $e^+(3.5 \text{ GeV})e^-(8 \text{ GeV})$ collider.

Originally constructed for the study of CP violation. Its world record integrated luminosity of 1 ab^{-1} offers many opportunities for hadron physics.

Introduction Belle

The Belle detector

Intoduction ${\cal B}$ Intermediate Resonances

Sample Analysis chain

Selection and sample

Production processes

$$\begin{array}{rcl}
e^+e^- &\rightarrow & c\bar{c} \rightarrow \Lambda_c + X \\
e^+e^- &\rightarrow & c\bar{c} \rightarrow X' \rightarrow \Lambda_c + X
\end{array}$$

$$\begin{array}{rcl}
\Sigma^+ &\rightarrow & p\pi^0 \ (51.57 \pm 0.30)\% \\
\Sigma^0 &\rightarrow & \Lambda^0\gamma \ (100)\% \\
\Lambda^0 &\rightarrow & p\pi^- \ (63.9 \pm 0.5)\%
\end{array}$$

Selection with BDT

BDT input variables

Among others: $p/p_{max},$ the χ^2 of the vertex constrained fit, the cluster energy and direction of detected photons in the ECL

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

э

Sample Analysis chain

Invariant mass parameterization

Sample Analysis chain

$p^+K^-\pi^+$ PDG 2016 MC vs data

Standard Belle MC insufficient. (More Dalitz plots later)

- 4 同 6 4 日 6 4 日 6

э

Sample Analysis chain

Model independent extraction of signal yield $p^+K^-\pi^+$

Efficiency Corrected yield

$$\begin{split} y_{data}^{corr} &= \sum_{i}^{n} \frac{y_{i}}{\epsilon_{i}}, \ \frac{y_{PDG}^{corr}}{y_{data}^{corr}} = 1.05\\ 21 \text{ bins, } \epsilon_{i}^{min} &= 0.1, \ \epsilon_{i}^{max} &= 0.19\\ \text{ Comp. with 75 bins} &\to \text{Syst.} \end{split}$$

$p^+K^-\pi^+$ mass distribution

 $\Lambda_c \to \Sigma \pi \pi$ resonant decays in Belle data

Sample Analysis chain

Model independent extraction of signal yield $\Sigma^0 \pi^+ \pi^0$

Varying $\Lambda^0 \pi^+ \pi^0 + \gamma$ background 23 bins, $\epsilon_i^{min} = 0.007$, $\epsilon_i^{max} = 0.03$ Comp. with 83 bins \rightarrow Syst. $\Sigma^0 \pi^+ \pi^0$ efficiency М(ππ)² [GeV/c²]² 0.03 0 025 0.8 a 0.02 0.6 0.015 (b) 0.4 0.005 0.2 2.5 4.5 $M(\Sigma^0 \pi^*)^2 [GeV/c^2]^2$

 $\Sigma^0 \pi^+ \pi^0$ mass distribution

M. Berger, K. Suzuki, C. Schwanda $\Lambda_c \rightarrow \Sigma \pi \pi$ resonant decays in Belle data

Sample Analysis chain

Model independent extraction of signal yield $\Sigma^+ \pi^0 \pi^0$

Reduced binning due to lacking statistics.
6 bins,
$$\epsilon_i^{min}$$
=0.003, ϵ_i^{max} =0.017
Comp. with one bin \rightarrow Syst.

$\Sigma^+\pi^0\pi^0$ mass distribution

Sample Analysis chain

Systematic Errors

Systematic studies

π^0 :	$\tau^- o \pi^- \pi^0 \nu_{\tau}$	Λ^0 :	$B \to \Lambda \bar{\Lambda} K^+$
Κ π:	$D^{*+} ightarrow D^0 \pi^+$, $D^0 ightarrow K^- \pi^+$	PDF:	toy MC

Source	$\Delta y(\Sigma^+\pi^+\pi^-)$	$\Delta y(\Sigma^+ \pi^0 \pi^0)$	$\Delta y(\Sigma^0 \pi^+ \pi^0)$	$\Delta y(pK\pi)$
Pdf Model	1.3	3.1	1.84	1.04
Dalitz structure	0.3	2.4	0.7	0
Proton identification	0.42	0.39	0.39	0.47
K π identification	2.2		3.1	1.64
Tracking	0	0	0	0.7
Λ identification			2.68	
π^0 identification	2.44	6.8	2.27	
MC statistics	0.1	0.6	0.3	0
$\mathcal{B}_{ ext{PDG}}$	0.3	0.3	0.5	
Total	4.38	8.02	5.15	2.64

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

14/33

Sample Analysis chain

$\mathcal{B}(\Sigma\pi\pi)$ Results submitted to PRD

Errors are in order stat., sys. and $(\mathcal{B}(pK\pi))$.

Final state	$\mathcal{B}(\Sigma\pi\pi)/\mathcal{B}(pK\pi)$	$\mathcal{B}(\Sigma\pi\pi)$ [%] ¹	$\mathcal{B}_{PDG}(\Sigma\pi\pi)$ [%]
$\Sigma^{+}\pi^{+}\pi^{-}$	$0.706 \pm 0.003 \pm 0.036$	$4.48 \pm 0.02 \pm 0.23 \pm 0.23$	4.57 ± 0.29
$\Sigma^0 \pi^+ \pi^0$	$0.491 \pm 0.005 \pm 0.028$	$3.12\pm 0.03\pm 0.18\pm 0.16$	2.3 ± 0.9
$\Sigma^+ \pi^0 \pi^0$	$0.198 \pm 0.006 \pm 0.017$	$1.26 \pm 0.04 \pm 0.11 \pm 0.07$	-

 $\begin{array}{l} \mathcal{B}(\Sigma^+\pi^+\pi^-) \text{ is compatible with the current world average,} \\ \mathcal{B}(\Sigma^0\pi^+\pi^0) \text{ is the most precise measurement to date and} \\ \mathcal{B}(\Sigma^+\pi^0\pi^0) \text{ is measured for the first time} \\ (\min \ -ln\mathcal{L} = -509, 532 \text{ vs. } -54, 768.3 \text{ for only background}). \end{array}$

Current status

Belle publication 500: https://arxiv.org/abs/1802.03421 Currently working on the response to the referee report.

¹Using $\mathcal{B}(pK\pi) = 6.35 \pm 0.33$

M. Berger, K. Suzuki, C. Schwanda

Sample Alternative approach

PAWIAN A partial wave analysis software framework

Pawian

- In development for the Panda experiment
- based on Isobar model
- Already used in BES3 collaboration.
- Supports coupled channel analysis.
- Relatively untested for Baryons and "isolated resonances".

Left data, right fit result.

э

Sample Alternative approach

Pawian algorithm

Event based maximum likelihood fit

$$-\ln \mathscr{L} \approx -\sum_{i=1}^{n_{data}} \ln(w(\boldsymbol{\tau}_{\mathbf{i}}, \boldsymbol{\alpha}) \cdot Q_{i}) + \left(\sum_{i=1}^{n_{data}} Q_{i}\right) \cdot \ln\left(\frac{\sum_{j=1}^{n_{MC}} w(\boldsymbol{\tau}_{\mathbf{j}}, \boldsymbol{\alpha})}{n_{MC}}\right) + \frac{1}{2} \cdot \left(\sum_{i=1}^{n_{data}} Q_{i}\right) \cdot \left(\frac{\sum_{j=1}^{n_{MC}} w(\boldsymbol{\tau}_{\mathbf{j}}, \boldsymbol{\alpha})}{n_{MC}} - 1\right)^{2}$$

- $\boldsymbol{n}_{_{data}}$: number of reconstructed data events
- $\mathbf{n}_{_{\rm MC}}$: number of reconstructed phase space distributed Monte Carlo events
- Q_i: event weight

 $W(\tau, \alpha)$: transition probability (cross section) M. Berger, K. Suzuki, C. Schwanda $\Lambda_c \rightarrow \Sigma \pi \pi$ resonant decays in Belle data

Sample Alternative approach

Pawian algorithm

Differential cross section or event weight with $X \rightarrow \Sigma^{+} \pi^{-}$

$$w \propto \sum_{M_{\Lambda_c}=-1/2}^{1/2} P_{M_{\Lambda_c}} \sum_{\lambda_{\Sigma^+}=-1/2}^{1/2} |A^{J_{\Lambda_c},M_{\Lambda_c}}_{\lambda_X,\lambda_{\pi^+}} A^{J_X,\lambda_X}_{\lambda_{\Sigma^+},\lambda_{\pi^-}} F_l(m_x)|^2$$

 $\sum_{M_{\Lambda_c}=-1/2}^{1/2} \sum_{\Lambda_{\Sigma^+}=-1/2}^{1/2} : \text{incoherent sum over the spin projections of all initial and} \\ \text{final state particles}$

 $P_{M_{\Lambda_c}}$: polarization of the Λ_c related to the quantization axis (fit parameter)

 $A^{J_{\Lambda_c},M_{\Lambda_c}}_{\lambda_X,\lambda_{\pi^+}=0} : \text{production amplitude for the resonance X} \to \Sigma^+ \pi^-$

 $A^{J_X,\lambda_X}_{\lambda_{\Sigma^+},\lambda_{\pi^-}=0}$: decay amplitude for the resonance X o Σ^+ π^-

 $F_l(m_x)$: dynamics of the resonance X description by e.g. Breit-Wigner or K-matrix formalism in general depending on orbital momentum I due to barrier factors [18]

Sample Alternative approach

Pawian algorithm

 $F_{\lambda_{X}0}^{\Lambda_{c}}$: complex fit parameter (helicity amplitude)

 $\begin{array}{l} d_{M_{\Lambda_c}}^{J_{\Lambda_c}}(cos\Theta_X^{\Lambda_c}) \colon \text{Wigner-d function (reference system of } \Lambda_c \text{ not known} \\ \text{ and thus no } \phi \text{ information available)} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Sample Alternative approach

Pawian algorithm

decay amplitude for the resonance X

$$A^{J_X,\lambda_X}_{\lambda_{\Sigma^+},\lambda_{\pi^-}}=F^X_{\lambda_{\Sigma^+}\,0}\cdot D^{J_X}_{\lambda_X\,\lambda_{\Sigma^+}}(cos\Theta^X_{\Sigma^+},\phi^X_{\Sigma^+})$$

$$D^{J_X}_{\lambda_X \, \lambda_{\Sigma^+}}(cos \Theta^X_{\Sigma^+}, \phi^X_{\Sigma^+})$$

Wigner-D function (here also ϕ information available)

 $\begin{array}{ll} \text{Parity conservation} \\ \text{(strong decay):} \end{array} \quad \quad F_{\lambda_{\Sigma^+} \, 0}^X = \eta_{\Sigma} \eta_{\pi} (-1)^{J^X - J^{\Sigma^+} - J^{\pi^-}} F_{-\lambda_{\Sigma^+} \, 0}^X \end{array}$

Transformation of the helicity amplitude $F_{\lambda_{\Sigma^+} 0}^X$ into the ls-schema $F_{\lambda_{\Sigma^+} 0}^X = \sum_{l_s} \alpha_{l_s}^X CG(l, 0, s, \lambda_{\Sigma} \mid s, \lambda_{\Sigma}) CG(J^{\Sigma}, \lambda_{\Sigma}, 0, 0 \mid s, \lambda_{\Sigma})$ $\alpha_{l_s}^X$: new fit parameter

Advantage: I-dependent parametrization for a better description of the dynamics $F_l(m_x)$

- Use the two cleanest samples to conduct a coupled channel PWA.
- Start with the single channels to get a base hypothesis.
- Optimize decision criteria, and refine by adding K-Matrix etc.
- For $pK\pi^+$: Last results from 1999 ²
- No previous results for $\Sigma^+\pi^-\pi^+$

²Aitala, E. M., Amato, S., Anjos, J. C., Appel, J. A., Ashery, D., Banerjee, S., Zhang, C. (2000). Multidimensional resonance analysis of $\Lambda_c^+ p^+ K \pi^+$. Physics Letters B, 471(4), 449459. https://doi.org/https://doi.org/10.1016/S0370-2693(99)01397-0 \approx \approx 200

M. Berger, K. Suzuki, C. Schwanda $\Lambda_c o \Sigma \pi \pi$ resonant decays in Belle data

Sample Alternative approach

Data sample

M. Berger, K. Suzuki, C. Schwanda $\Lambda_c
ightarrow \Sigma \pi \pi$ resonant decays in Belle data

Sample Alternative approach

sideband

Sample Alternative approach

Projections (sideband subtracted)

(日) (同) (日) (日)

э

24/33

Validation?

- Apply to $pK\pi$ and compare with E791
- No success with applying their model to Belle data (see next slide).
- Hard to reconcile $\Sigma \pi \pi$ and $pK\pi$ data sets $(\Sigma(1940)^0 \rightarrow p^+K^-)$
- Still very real possibility that there are problems left with the implementation.

イロト 不得下 イヨト イヨト ニヨー

Sample Alternative approach

E791 $p^+K^-\pi^+$ PWA Belle sample compatible?

E791 selection based on proton p_t

 $\Lambda_c^+ \to p^+ K^- \pi^+$, E791

 $\Lambda_c^+ \to p^+ K^- \pi^+$, Belle

Sample Alternative approach

Plan for 3 months at JAEA

- Measure position width and \mathcal{BR} for $\Lambda(1405)$ from $\Sigma^+\pi^-\pi^+$
 - Directly, from two-body Sigma pi mass
 - (\mathcal{BR}) Indirectly, from cutting a region out of the Dalitz plot and fitting the three-body mass
- Σ^* needs to be subtracted from the $\Lambda_c^+ \to \Lambda^0 \pi^+ \pi^0$ channel.
- Same can be done for $\Lambda(1520)$ from $p^+K^-\pi^+$ and $\Sigma^+\pi^-\pi^+$ if the timing permits

・ロト ・ 日 ・ モート ・ 日 ・ うんで

Summery and outlook

- We analyze weak $\Lambda_c \to \Sigma \pi \pi$ decays.
- Branching fractions for $\Sigma^+\pi^+\pi^-, \Sigma^+\pi^0\pi^0$ and $\Sigma^0\pi^+\pi^0$ have been measured.
- A variety of resonances appear in the data, including those of longstanding interest like $\Lambda(1405).$
- Our ultimate plan is to conduct a $pK\pi \Sigma\pi\pi$ coupled channel analysis utilizing the PAWIAN framework.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つへの

Backup

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

29/33

Sample Alternative approach

Dalitz (and other) plots

イロト イポト イヨト イヨト 二日

30/33

Sample Alternative approach

Initial state of the inertial system has to be defined in the laboratory system by two 4-vectors³

	one projectile	e^+e^- system
Е	E_{HER}	$E_{HER} + E_{LER}$
Х	$E_{HER} * sin(\theta)$	$E_{HER} * sin(\theta)$
Υ	0.	0.
Ζ	$E_{HER} * cos(\theta)$	$E_{HER} * cos(\theta) - E_{LER}$

 $^{3}E_{HER} = 7.9965, E_{LER} = 3.5, \theta = 0.022$

Intoduction \mathcal{B} Intermediate Resonances

Sample Alternative approach

Detector acceptance

- Taken care of by Pawian.
- Needs phasespace distributed signal MC.
- Does not support MC weights.

Reweight MC with PID

- Multiply weights eventwise
- Randomly skip events based on weight
- Randomly save event two times b. o. weight

イロト 不得 とくき とくき とうき