# **Multiquark configurations**

### Su Houng Lee



- 1. Few words on multiquark states
- 2. Where are the compact multiquark states
- 3. Exotica production from heavy ion collision
- 4. Nuclear three-body repulsion at short distance
- 5. Summary

#### **Anowledgements:**

To all my former/present collaborators and students

## I: Few words on "Multiquark states"







- 2014 -

parity = 1+

 $\eta_G = \eta_C (-1)^I$ 

 $G=+ \rightarrow$  will look at C=-



## Z(3900)

- 2013 -  
BESIII 
$$e^+e^- \rightarrow \pi^+ \pi^- J/\psi$$
  
 $M = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}$   
 $\Gamma = 46 \pm 10 \pm 20 \text{ MeV}$ 



Hence,

$$X(3872) \rightarrow I^G(J^{PC}) = 0^+(1^{++})$$

$$Z(3900) \rightarrow \pi^0 J/\psi Z(4430) \rightarrow \pi^0 \psi' \qquad \longrightarrow 1^+(1^{+-})$$



## Pentaquark - Pc

- 2015 - 
$$\Lambda_b^0 \to J/\psi p K^-$$

$$S = 3/2 \begin{bmatrix} M_1 = 4380 \pm 8 \pm 29 \text{ MeV} \\ \Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV} \end{bmatrix} S = 5/2 \begin{bmatrix} M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV} \\ \Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV} \end{bmatrix}$$

Baryon with ccu

- 2017 -

IH

$$\Xi_{cc}^{*+} \to \Lambda_c^* \; K^- \pi^+ \pi^+$$

$$m_{\Xi_{cc}} - m_{\Lambda_c} = 1334.94 \pm 0.72 \pm 0.27 \text{ MeV}$$
  
 $m_{\Xi_{cc}} = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 (\Lambda_c^+) \text{MeT}$ 

PRL119 (2017)112001



**d\*(2380)** 
$$I(J^{P}) = 0(3^{+})$$
  $\Gamma = 70 \text{ MeV}$ 

- WASA-at-COSY [H. Clement]-



## Revival of an old topic



L(1405) (Weise, Oset, Jido, Sekihara..)





## Normal meson, compact multiquark, molecules, resonances

|                              | Normal<br>meson        | Compact<br>multiquark | Molecules | Resonance     |
|------------------------------|------------------------|-----------------------|-----------|---------------|
| Geometrical<br>configuration |                        |                       |           |               |
| Examples                     | Nucleon,<br>pion, kaon | ?                     | X(3872)   | K*, rho meson |

## II: Where are the compact "Multiquark states"

• Lattice Results : HAL QCD collaboration for H dibaryon in SU(3) symmetric limit



 $\rightarrow$  Flavor 1 channel could give compact configuration

Compact multiquark states could exists if there is a strong short range attraction

The  $r \rightarrow 0$  can be understood from quark model

## Quark wave function for multiquark states (W.Park, A.Park, S.Cho, SHL)

- Some Previous works have limited Fock space: diquark picture ...
- Hard to picture interplay between various contribution
- Hard to understand SU(3) breaking effects.

 $\rightarrow$  Work out the full (color) x (spin) x (flavor) wave function for all multiquark configurations at least for the ground state s-wave states

## Quark wave function for light dibaryons (W.Park, A.Park, SHL15.)

- Choose the spatial part to be symmetric
- Choose the Color-Isospin-Spin part to be antisymmetric : SU(12)

 $\left[1^{6}\right]_{CIS} = \left(\left[1\right]_{C}, \left[50\right]_{IS}\right) \oplus \left(\left[8\right]_{C}, \left[64\right]_{IS}\right) \oplus \left(\left[10\right]_{C}, \left[10\right]_{IS}\right) \oplus \left(\left[10\right]_{C}, \left[10\right]_{IS}\right) \oplus \left(\left[27\right]_{C}, \left[6\right]_{IS}\right) \right) \right)$ 



- Dibaryon: 5 Independent color singlet bases



 $|C_1\rangle = \{[(12)_6 3]_8 [4(56)_6]_8\}_1$ 

| 1 | 3 |
|---|---|
| 2 | 4 |
| 5 | 6 |

| 1 | 2 |
|---|---|
| 3 | 5 |
| 4 | 6 |

 $|C_3\rangle = \{[(12)_6 3]_8 [4(56)_{\overline{3}}]_8\}_1$ 

 $|C_2\rangle = \{[(12)_{\overline{3}}3]_{8}[4(56)_{6}]_{8}\}_{1}$ 



 $|C_4\rangle = \{[(12)_{\overline{3}}3]_8 [4(56)_{\overline{3}}]_8\}_1$ 

14 25 36

 $|C_5\rangle = \{[(12)_{\overline{3}}3]_1[4(56)_{\overline{3}}]_1\}_1$ 

- Pentaquark: 3 Independent color singlet bases (W.Park, A. Park, S.Cho, SHL PRD95,054027)

 $|C_1\rangle = \{[(12)_6 3]_8 [4(56)_6]_8\}_1$ 

 $|C_2\rangle = \{[(12)_{\overline{3}}3]_{8}[4(56)_{6}]_{8}\}_{1}$ 

 $|C_3\rangle = \{[(12)_63]_8[4(5)_{\overline{3}}]_8\}_1$ 







| 3 | 5 |
|---|---|
| 4 | 6 |
|   |   |



 $|C_4\rangle = \{[(12)_3 3]_8 [4(5)_3]_8\}_1$ 

 $|C_5\rangle = \{[(12)_3 3], [4(5)_3], \}_1$ 

- Heptaquark: 11 Independent color singlet bases (W.Park, A. Park, SHL PRD96,034029)

### In quark model: wave function should follow Pauli Principle

• Totally antisymmetric (color **x** spin **x** flavor) wave function (s-wave ground state)



**Example**:  $\Omega\Omega$  in the Spin=3 channel is highly repulsive because



→ Hence, assuming all quarks are in the S wave, Pauli principle forbids compact configuration.

Such forbidden configuration are highly repulsive at  $r \rightarrow 0$  (Oka et al quark cluster model)

## Constituent quark model

• In Constituent quark model (Can fit experimental hadron spectrum well)

$$\mathcal{H} = \sum_{i=1}^{n} \left( m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

• Baryon Mass splitting in a simplified version

Mass = Kinetic + confining.. + 
$$\sum_{i,j} \frac{C_B}{m_i m_j} [s_i \cdot s_j]$$
  
Example  
 $\Lambda_c$  Mass = Kinetic + conf. -  $\frac{3}{4} \frac{C_B}{m_u m_d}$   
 $\Sigma_c$  Mass = Kinetic + conf. +  $\frac{1}{4} \frac{C_B}{m_u m_d} - \frac{C_B}{m_u m_s}$ 

 $m_u = m_d = 300 \text{ MeV}, \quad m_s = 500 \text{ MeV}, \quad m_c = 1500 \text{ MeV}, \quad m_b = 4700 \text{ MeV}$ 

| Mass diff  | $M_{\Delta} - M_N$ | $M_{\Sigma}$ - $M_{\Lambda}$ | $M_{\Sigma c}$ - $M_{\Lambda c}$ | $M_{\Sigma b}	ext{-}M_{\Lambda b}$ |
|------------|--------------------|------------------------------|----------------------------------|------------------------------------|
| Formula    | 290 MeV            | 77 MeV                       | 154 MeV                          | 180 MeV                            |
| Experiment | 290 MeV            | 75 MeV                       | 170 MeV                          | 192 MeV                            |

• Meson Mass splitting in a simplified version

Mass = Kinetic + confining... + 
$$\sum_{i,j} \frac{C_M}{m_i m_j} [s_i \cdot s_j]$$



| Mass diff  | Μ <sub>ρ</sub> –Μ <sub>π</sub> | M <sub>K*</sub> -M <sub>K</sub> | M <sub>D*</sub> -M <sub>D</sub> | M <sub>B*</sub> -M <sub>B</sub> |
|------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Formula    | 635 MeV                        | 381 MeV                         | 127 MeV                         | 41 MeV                          |
| Experiment | 635 MeV                        | 397 MeV                         | 137 MeV                         | 46 MeV                          |

Works very well with  $3 \times C_B = C_M = 635 m_u^2$ 



### When allowed, Where are the Compact multiquark configuration?

• In Constituent quark model (Can fit experimental hadron spectrum well)

$$\mathcal{H} = \sum_{i=1}^{n} \left( m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

1) Additional Kinetic energy compared to separated hadrons



## When allowed, Where are the Compact multiquark configuration?

• In Constituent quark model

$$\mathcal{H} = \sum_{i=1}^{n} \left( m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

2) Color-color will not add much

$$(\lambda_1^c + \lambda_2^c + \dots \lambda_n^c)^2 = 2 \sum_{i < j} \lambda_i^c \lambda_j^c + \sum_i (\lambda_i^c)^2$$
  
If color singlet

 $\rightarrow$  If a color singlet configuration is possible

$$\sum_{i < j} \lambda_i^c \lambda_j^c = -\frac{1}{2} \times \sum_i (\lambda_i^c)^2 = -\frac{2}{3} N_{Total} = -\frac{2}{3} (N_{B1} + N_{B2})$$

### When allowed, Where are the Compact multiquark configuration?

• In Constituent quark model

$$\mathcal{H} = \sum_{i=1}^{n} \left( m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

3) Color-spin interaction is important

$$\mathbf{K} = \sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s)$$

#### for 2 body, quark-quark vs quark-antiquark

|        | qq   |      |      |      | 9   | q |      |      |
|--------|------|------|------|------|-----|---|------|------|
| Color  | А    | S    | А    | S    | 1   | 8 | 1    | 8    |
| Flavor | А    | А    | S    | S    |     |   |      |      |
| Spin   | A(1) | S(3) | S(3) | A(1) | 1   | 1 | 3    | 3    |
| K      | -8   | -4/3 | 8/3  | 4    | -16 | 2 | 16/3 | -2/3 |

Color spin interaction - General remarks

$$-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s)$$

#### 1) Part of a larger group

- Color: SU(3) and 8 generators  $\lambda^c$
- Spin: SU(2) and 3 generators  $\sigma^s$
- SU(6) generator:  $\lambda^c \times \sigma^s$  (24) +  $\lambda^c \times 1$  (8) + 1 ×  $\sigma^s$  (3) = A (35 generators)
  - Therefore SU(6) Casmir of N quarks  $C_6 = \sum (A_1 + \cdots + A_N)^2 = 2 \sum_{i < j} A_i A_j + N (A_1^2)$

where  $(A_1^2) = \frac{35}{6}$  and  $2\sum_{i < j} A_i A_j = \sum_{i < j} (\frac{1}{3}\sigma_i \sigma_j + \frac{1}{2}\lambda_i \lambda_j + \frac{1}{3}(\lambda \sigma)_i (\lambda \sigma)_j)$ 

$$\rightarrow \sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) \propto C_6 - N \frac{35}{6} - \frac{1}{2} (\sigma_{Total}^2 - \sum \sigma_i^2) - \frac{3}{4} (\lambda_{Total}^2 - \sum \lambda_i^2)$$

total spin-N x(quark spin) , total color-N x(quark color)

Color spin interaction - General remarks II •  $\rightarrow \sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) \propto C_6 - N \frac{35}{6} - \frac{1}{2} (\sigma_{Total}^2 - \sum \sigma_i^2) - \frac{3}{4} (\lambda_{Total}^2 - \sum \lambda_i^2)$ 2) Color –flavor-spin wave function should be totally antisymmetric. Then For SU(2) flavor:  $-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = \frac{4}{2} N(N-6) + 4I(I+1) + \frac{4}{2} S(S+1) + 2C_c$ For SU(3) flavor:  $-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = N(N-10) + 4C_F + \frac{4}{3}S(S+1) + 2C_c$  $4C_F = \frac{4}{2}(p^2 + q^2 + 3p + 3q + qp)$ 

$$p$$
 using  $p + 2q = N \rightarrow 4C_F = (4I(I+1) + N(N+6)/3)$ 

For SU(4) flavor:  $-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = \frac{5}{6} N \left( N - \frac{72}{5} \right) + 4C_F^{SU(4)} + \frac{4}{3} S(S+1) + 2C_C$ 

 $\boldsymbol{Q}$ 

Color spin interaction

For SU(3) flavor:  $K = -\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = N(N - 10) + 4C_F + \frac{4}{3}S(S + 1) + 2C_C$ 

Nucleon and  $\Lambda \rightarrow K = -8$  even in the SU(3) broken limit

- Jaffe (77) : K for H-dibaryon vs two  $\Lambda$ 



→ using Nucleon(*K*=-8) to Delta (*K*=+8) mass difference of 290 MeV  $\Delta K$ =-8 corresponds to about 145 MeV attraction  $\gg$  additional Kinetic energy of 100 MeV

### Where are the compact multiquark states? - Examples

• Dibaryons with 6 light quarks: W.Park, A. Park, SHL, PRD92(2015)014037

For SU(2) flavor: 
$$K = \sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = \frac{4}{3} N(N-6) + 4I(I+1) + \frac{4}{3} S(S+1) + 2C_c$$

Color spin interaction of 6 quark state and their decays

$$K_{\text{dibaryon}} - (K_{\text{baryon 1}} - K_{\text{baryon 2}}) - \frac{1}{2}$$

 $(\mathbf{I},\mathbf{G})$   $(\mathbf{0},\mathbf{0})$   $(\mathbf{0},\mathbf{1})$   $(\mathbf{1},\mathbf{0})$   $(\mathbf{1},\mathbf{0})$   $(\mathbf{0},\mathbf{0})$   $(\mathbf{0},\mathbf{0})$ 

- $\rightarrow$  The only non repulsive channel, but also "no attraction"
- $\rightarrow$  Strong indication that d\*(2380) is a molecular configuration

(A. Gal, PLB769(2017)436) 
$$s_{\Delta} = (1232 - B_{\Delta\Delta}/2)^2 - p_{\Delta\Delta}^2$$
,  $\overline{s}_{\Delta} = (1232 - B_{\Delta\Delta}/2)^2 - P_{\Delta\Delta}^2$ ,

- $\rightarrow$  No compact dibaryon in flavor SU(2)
- → Two body nuclear force is always repulsive at short distance : (Oka quark cluster model)

• H dibaryon with realistic quark masses: W.Park, A. Park, SHL, PRD93(2016)074007



$$m_{u,d} = 300 \,\mathrm{MeV}, \ m_s = 500 \,\mathrm{MeV}$$

TABLE III. The matrix element of  $-\langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle$  for hyperfine potential of the dibaryon with respect to isospin and flavor.

| Isospin Flavor                     | $- \langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle \ i < j = 1 - 4$ | $-\langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle  i = 1$ -4, $j = 5, 6$ | $-\langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j  angle   i=5,  j=6$ |
|------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| $I = 0, F^1$<br>$I = 0, F^{27}$    | -5/6<br>-13/18                                                                      | -11/4                                                                                    | 3                                                                             |
| T = 0, T<br>Cross terms            | $1/(6\sqrt{3})$                                                                     | $-1/(4\sqrt{3})$                                                                         | $1/\sqrt{3}$                                                                  |
| $I = 1, F^{27}$                    | 4/9                                                                                 | 1/3                                                                                      | 8/3                                                                           |
| $I = 2, F^{28}$<br>$I = 2, F^{27}$ | 16/5<br>146/45                                                                      | 16/5<br>-28/15                                                                           | 16/5<br>52/15                                                                 |
| Cross terms                        | $-2\sqrt{2}/(15\sqrt{3})$                                                           | $\sqrt{2}/(5\sqrt{3})$                                                                   | $-4\sqrt{2}/(5\sqrt{3})$                                                      |

 $\rightarrow$  If the SU(3) breaking is taken into account. Color spin with constituent quark mass



| $-\sum_{i< j}^n \frac{K}{m_i m_j}$ | H dibaryon                                                                                          | Λ + Λ                              | $\Delta \; \mathbf{E}_{hyperfine}$ | $\Delta$ $E_{kinetic}$ |
|------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------|
| $m_{u,d} = m_s$                    | $-\frac{24}{m_u^2}$                                                                                 | $-\frac{8}{m_u^2}-\frac{8}{m_u^2}$ | -145 MeV                           | +100MeV                |
| $m_{u,d} \approx \frac{3}{5} m_s$  | $\left(-\frac{5}{m_u^2} - \frac{22}{m_u m_s} + \frac{3}{m_s^2}\right) \approx -\frac{17.12}{m_u^2}$ | $-\frac{8}{m_u^2}-\frac{8}{m_u^2}$ | -20 MeV                            | + 84 MeV               |

## Where are the compact multiquark states? - What we need





 $\rightarrow$  that survive in the SU(3) breaking limit

2) Need heavy quarks to suppress additional kinetic term

$$\frac{\rho_{BB}^2}{2\mu_{BB}} \approx \frac{\left(1/size\right)^2}{2\mu_{BB}} \qquad \qquad \mu_{BB} \approx \frac{m_{baryon1}m_{baryon2}}{m_{baryon1} + m_{baryon2}}$$

 $\rightarrow$  both baryons should have heavy quarks

• Is Pentaquark (Pc) compact ? W.park, A. Park, S.Cho, SHL, PRD95(2017) 054027

1) Color spin interaction of Pc(4380) 3/2 - state  $qqq c\overline{c}$ 

- 2015 - 
$$\Lambda_b^0 \rightarrow J/\psi p K$$

2

$$S = 3/2 \quad \left\{ \begin{array}{c} M_1 = 4380 \pm 8 \pm 29 \text{ MeV} \\ \Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV} \end{array} \right. \qquad S = 5/2 \quad \left\{ \begin{array}{c} M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV} \\ \Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV} \end{array} \right.$$

Pc(4380) can be reconstructed from  $J/\psi + \rho$ 

| $-\sum_{i< j}^{n} \frac{K}{m_{i}m_{j}}$ <b>Pc(4380)</b>                                                    | <b>Ρ</b> + <b>J</b> /ψ                                                          | $\Delta \; \mathbf{E}_{hyperfine}$ | $\Delta$ <b>E</b> <sub>kinetic</sub> |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| $\left(-\frac{7.88}{m_u^2} + \frac{5.29}{m_c^2} - \frac{1.41}{m_u m_c}\right) \approx -\frac{7.95}{m_u^2}$ | $\left(-\frac{8}{m_u^2} + \frac{16}{3m_c^2}\right) \approx -\frac{7.79}{m_u^2}$ | -3 MeV                             | + 70MeV                              |

 $\rightarrow$  Most likely a molecular states

- Heavy Tetraquarks (Spin=1 case)
- 1) Heavy quark-antiquark:  $c\overline{c}$

$$\mu_{BB} \approx \frac{M_{c\bar{c}}M_{q\bar{q}}}{M_{baryon1} + M_{baryon2}} \approx M_{q\bar{q}}$$

| $-\sum_{i< j}^{n}\frac{K}{m_{i}m_{j}}$ | Tetraquark                                         | J/ψ + π                                            | $\Delta \; E_{hyperfine}$ | $\Delta$ $E_{kinetic}$ |
|----------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------|------------------------|
| CC                                     | $\left(-\frac{16}{m_u^2}+\frac{16}{3m_c^2}\right)$ | $\left(-\frac{16}{m_u^2}+\frac{16}{3m_c^2}\right)$ | 0 MeV                     | +100MeV                |

2) Heavy quark-quark: *cc* 

$$\mu_{\scriptscriptstyle MM} \approx \frac{m_{c\overline{q}} m_{c\overline{q}}}{m_{c\overline{q}} + m_{c\overline{q}}} \approx \frac{1}{2} m_{c\overline{q}}$$



| $-\sum_{i< j}^n \frac{K}{m_i m_j}$ | Tetraquark                                                                     | D + D*                                                 | $\Delta \; E_{hyperfine}$ | $\Delta$ $\mathbf{E}_{kinetic}$ |
|------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|---------------------------------|
| СС                                 | $\left(-\frac{8}{m_u^2} + \frac{8}{3m_c^2}\right) \approx -\frac{7.47}{m_u^2}$ | $\left(-\frac{8}{m_q m_c} + \frac{8}{3m_q m_c}\right)$ | -97 MeV                   | +50MeV                          |

#### Heavy Tetraquarks

#### 1) Previous works on Tcc

Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07)

QCD sum rules: F Navarra, M. Nielsen, SHLee, PLB 649, 166 (2007) simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09)

#### 2) Promising final state signals

$$T^{1}_{cc}(ud\overline{c}\overline{c}) \rightarrow (\overline{D}^{0} + D^{*-}) \rightarrow K^{+}\pi^{-} + K^{+}\pi^{-}\pi^{-}$$

| threshold                                   | decay mode                                             | lifetime                   |
|---------------------------------------------|--------------------------------------------------------|----------------------------|
| $M_{T_{cc}} > M_{D^*} + M_D$                | $D^{*-}\bar{D}^{0}$                                    | hadronic decay             |
| $2M_D + M_\pi < M_{T_{cc}} < M_{D^*} + M_D$ | $\bar{D}^{0}\bar{D}^{0}\pi^{-}$                        | hadronic decay             |
| $M_{T_{cc}} < 2M_D + M_{\pi}$               | $D^{*-}K^{+}\pi^{-}, D^{*-}K^{+}\pi^{+}\pi^{-}\pi^{-}$ | $0.41\times 10^{-12}$ sec. |

#### $\rightarrow$ Most likely a compact tetraquark states

→ Could be measured in high energy Heavy Ion Collision (ExHIC coll)

## III: Exotica production from Heavy Ion Collision



## Particle production in heavy ion collision





### Production of resonances

ALICE (2015 prc)



- Reconstruction
  - $K^* \rightarrow K + \pi$ ,  $\Gamma > 50 \text{ MeV}$

$$\phi \to K + K, \quad \Gamma > 5 \,\mathrm{MeV}$$

 $\Lambda(1529) \rightarrow \overline{K} + N, \quad \Gamma > 15 \text{ MeV}$ 

STAR collaboration (PRL 2006) find

$$\frac{\Lambda(1529)_{Au+Au}}{\Lambda(1529)_{Stat}} \approx 0.4$$



### Details of coalescence model calculation (ExHIC PPNP 2017)

Model central rapidity, central collision using Lattice EOS

| able 3.2<br>stimates of heavy quark p | airs dN /dv at midrapidit | ty in 0%–10% central collision at | RHIC and LHC. |
|---------------------------------------|---------------------------|-----------------------------------|---------------|
|                                       | RHIC                      | LHC @2.76 TeV                     | LHC @5.02 TeV |
| Without shadowing                     |                           |                                   |               |
| $N_c = N_{\bar{c}}$                   | 4.5                       | 17                                | 23            |
| $N_b = N_{\bar{b}}$                   | 0.034                     | 0.68                              | 1.2           |
| With shadowing                        |                           |                                   |               |
| $N_c = N_{\bar{c}}$                   | 4.1                       | 11                                | 14            |
| $N_b = N_{\bar{b}}$                   | 0.031                     | 0.44                              | 0.71          |



Coalescence Parameters:
 fit production of normal hadrons
 from statistical model

$$N_{h}^{\text{coal}} = g_{h} \prod_{j=1}^{n} \frac{N_{j}}{g_{j}} \prod_{i=1}^{n-1} \frac{\int d^{3} y_{i} d^{3} k_{i} f_{i}(k_{i}) f^{W}(y_{i}, k_{i})}{\int d^{3} y_{i} d^{3} k_{i} f_{i}(k_{i})}$$

$$f_{s}^{W}(y_{i}, k_{i}) = 8 \exp\left(-\frac{y_{i}^{2}}{\sigma_{i}^{2}} - k_{i}^{2} \sigma_{i}^{2}\right) \sigma_{i} = 1/\sqrt{\mu_{i}\omega}$$

$$m_{u,d} = 300 \text{ MeV}$$

$$m_{s} = 500 \text{ MeV}$$
  
 $m_{c} = 1500 \text{ MeV}$   
 $m_{b} = 4700 \text{ MeV}$ 

|                           | RHIC           |                    | LHC (2.76 | 5 TeV)             | LHC (5.0 | 02 TeV)            | RHIC                 | LHC (5 TeV)         |
|---------------------------|----------------|--------------------|-----------|--------------------|----------|--------------------|----------------------|---------------------|
|                           | Sc. 1          | Sc. 2              | Sc. 1     | Sc. 2              | Sc. 1    | Sc. 2              | Ref                  | s [14,15]           |
| T <sub>H</sub> (MeV)      |                | 162                |           |                    | 156      |                    |                      | 175                 |
| $V_H$ (fm <sup>3</sup> )  |                | 2100               |           | 5                  | 380      |                    | 1908                 | 5152                |
| $\mu_B$ (MeV)             |                | 24                 |           |                    | 0        |                    | 20                   | 0                   |
| $\mu_s$ (MeV)             |                | 10                 |           |                    | 0        |                    | 10                   | 0                   |
| Yc                        |                | 22                 |           | 39                 |          | 50                 | 6.40                 | 15.8                |
| Yb                        | 4.0            | $0 \times 10^{7}$  | 8         | $.6 \times 10^{8}$ | 1        | $.4 \times 10^{9}$ | $2.2 \times 10^6$    | $3.3 \times 10^{7}$ |
| $T_{C}$ (MeV)             | 162            | 166                | 156       | 166                | 156      | 166                |                      | 175                 |
| $V_c$ (fm <sup>3</sup> )  | 2100           | 1791               | 5380      | 3533               | 5380     | 3533               | 1000                 | 2700                |
| $\omega$ (MeV)            | 590            | 608                | 564       | 609                | 564      | 609                |                      | 550                 |
| $\omega_{\rm s}$ (MeV)    | 431            | 462                | 426       | 502                | 426      | 502                |                      | 519                 |
| $\omega_c$ (MeV)          | 222            | 244                | 219       | 278                | 220      | 279                |                      | 385                 |
| $\omega_b$ (MeV)          | 183            | 202                | 181       | 232                | 182      | 234                |                      | 338                 |
| $N_u = N_d$               | 320            | 302                | 700       | 593                | 700      | 593                | 245                  | 662                 |
| $N_s = N_{\bar{s}}$       | 183            | 176                | 386       | 347                | 386      | 347                | 150                  | 405                 |
| $N_c = N_{\bar{c}}$       |                | 4.1                |           | 11                 |          | 14                 | 3                    | 20                  |
| $N_b = N_{\bar{b}}$       |                | 0.03               |           | 0.44               |          | 0.71               | 0.02                 | 0.8                 |
| $T_F$ (MeV)               |                | 119                |           | 1                  | 15       |                    |                      | 125                 |
| $V_F$ (fm <sup>3</sup> )  | 2              | 20355              |           | 50                 | 646      |                    | 11322                | 30569               |
| N <sub>K</sub>            |                | 67.5               |           | 1                  | 34       |                    | 142 <sup>a</sup>     | 363 <sup>a</sup>    |
| N <sub>κ</sub>            |                | 59.6               |           | 1                  | 34       |                    | 127 <sup>a</sup>     | 363ª                |
| N <sub>N</sub>            |                | 20                 |           |                    | 32       |                    | 62 <sup>a</sup>      | 150 <sup>a</sup>    |
| NA                        |                | 18                 |           | :                  | 28       |                    | -                    | -                   |
| NA                        |                | 3.8                |           | (                  | 5.5      |                    | -                    | -                   |
| Ng                        |                | 2.6                |           | 4                  | 4.4      |                    | 4.7                  | 13                  |
| NΩ                        |                | 0.37               |           | 0                  | .62      |                    | 0.81                 | 2.3                 |
| $N_D = N_{\bar{D}}$       |                | 1.5                |           | 4.0                |          | 5.2                | 1.0                  | 6.9                 |
| $N_{D^*} = N_{\bar{D}^*}$ |                | 2.0                |           | 5.4                |          | 6.9                | 1.5                  | 10                  |
| $N_{D_1} = N_{\bar{D}_1}$ |                | 0.20               |           | 0.49               |          | 0.63               | 0.19                 | 1.3                 |
| $N_B = N_{\bar{B}}$       | 8.1            | × 10 <sup>-3</sup> |           | 0.12               |          | 0.20               | $5.3 \times 10^{-3}$ | 0.21                |
| $N_{B^*} = N_{\bar{B}^*}$ | 1.9            | × 10 <sup>-2</sup> |           | 0.27               |          | 0.45               | $1.2 \times 10^{-2}$ | 0.49                |
| N <sub>Ac</sub>           |                | 0.17               |           | 0.36               |          | 0.46               | -                    | -                   |
| $N_{\Sigma_c}$            |                | 0.2                |           | 0.41               |          | 0.52               | -                    | -                   |
| $N_{\Sigma_c^*}$          |                | 0.28               |           | 0.56               |          | 0.71               | -                    | -                   |
| $N_{\Xi_c}$               |                | 0.11               |           | 0.25               |          | 0.32               | 0.10                 | 0.65                |
| <sup>a</sup> Values conta | in feed down c | ontributions.      |           |                    |          |                    |                      |                     |

Hadron coalescence for molecules at kinetic freezeout point

$$\omega = \frac{3}{2\mu_R \langle r^2 \rangle} \qquad \text{or} \quad \mathbf{B} \approx \frac{\eta^2}{2\mu_R a_0^2}, \quad \langle r^2 \rangle \approx \frac{a_0^2}{2}$$

| Particle                           | m (MeV) | 8 | Ι   | $J^P$           | 2q/3q/6q                  | 4q/5q/8q                | Mol.               | ω <sub>Mol.</sub> (MeV) | Decay mode                                      |
|------------------------------------|---------|---|-----|-----------------|---------------------------|-------------------------|--------------------|-------------------------|-------------------------------------------------|
| Mesons                             |         |   |     |                 |                           |                         |                    |                         |                                                 |
| $f_0(980)$                         | 980     | 1 | 0   | 0+              | $q\bar{q}, s\bar{s}(L=1)$ | $q\bar{q}s\bar{s}$      | ĒΚ                 | 67.8(B)                 | $\pi\pi$ (Strong decay)                         |
| $a_0(980)$                         | 980     | 3 | 1   | $0^{+}$         | $q\bar{q}(L=1)$           | $q\bar{q}s\bar{s}$      | ĒΚ                 | 67.8(B)                 | $\eta\pi$ (Strong decay)                        |
| K(1460)                            | 1460    | 2 | 1/2 | 0-              | $q\bar{s}$                | $q\bar{q}q\bar{s}$      | <i>Κ</i> ΚΚ        | 69.0(R)                 | $K\pi\pi$ (Strong decay)                        |
| D <sub>s</sub> (2317)              | 2317    | 1 | 0   | $0^{+}$         | $c\bar{s}(L=1)$           | $q\bar{q}c\bar{s}$      | DK                 | 273(B)                  | $D_s\pi$ (Strong decay)                         |
| $T_{cc}^{1a}$                      | 3797    | 3 | 0   | 1+              | _                         | $qq\bar{c}\bar{c}$      | $\bar{D}\bar{D}^*$ | 476(B)                  | $K^{+}\pi^{-} + K^{+}\pi^{-} + \pi^{-}$         |
| X(3872)                            | 3872    | 3 | 0   | $1^+, 2^{-c}$   | $c\bar{c}(L=2)$           | $q\bar{q}c\bar{c}$      | $\bar{D}D^*$       | 3.6(B)                  | $J/\psi\pi\pi$ (Strong decay)                   |
| Z <sup>+</sup> (4430) <sup>b</sup> | 4430    | 3 | 1   | 0 <sup>-c</sup> | _                         | $q\bar{q}c\bar{c}(L=1)$ | $D_1 \bar{D}^*$    | 13.5(B)                 | $J/\psi\pi$ (Strong decay)                      |
| $T_{cb}^{0a}$                      | 7123    | 1 | 0   | $0^{+}$         | _                         | $qq\bar{c}\bar{b}$      | $\bar{D}B$         | 128(B)                  | $K^+\pi^- + K^+\pi^-$                           |
| Baryons                            |         |   |     |                 |                           |                         |                    |                         |                                                 |
| Λ(1405)                            | 1405    | 2 | 0   | $1/2^{-}$       | qqs(L=1)                  | $qqqs\bar{q}$           | ĒΝ                 | 20.5(R)-174(B)          | $\pi \Sigma$ (Strong decay)                     |
| Θ <sup>+</sup> (1530) <sup>b</sup> | 1530    | 2 | 0   | 1/2+°           | _                         | $qqqq\bar{s}(L=1)$      | _                  | _                       | KN (Strong decay)                               |
| $\bar{K}KN^{a}$                    | 1920    | 4 | 1/2 | $1/2^{+}$       | _                         | $qqqs\bar{s}(L=1)$      | ĒΚΝ                | 42(R)                   | $K\pi\Sigma$ , $\pi\eta N$ (Strong decay)       |
| $\bar{D}N^{a}$                     | 2790    | 2 | 0   | $1/2^{-}$       | _                         | qqqqĒ                   | $\bar{D}N$         | 6.48(R)                 | $K^+\pi^-\pi^- + p$                             |
| $\bar{D}^*N^a$                     | 2919    | 4 | 0   | $3/2^{-}$       | _                         | $qqqq\bar{c}(L=2)$      | $\bar{D}^*N$       | 6.48(R)                 | $\overline{D} + N$ (Strong decay)               |
| $\Theta_{cs}^{a}$                  | 2980    | 4 | 1/2 | $1/2^{+}$       | _                         | $qqqs\bar{c}(L=1)$      |                    | _                       | $\Lambda + K^+\pi^-$                            |
| $BN^{a}$                           | 6200    | 2 | 0   | $1/2^{-}$       | _                         | $qqqq\bar{b}$           | BN                 | 25.4(R)                 | $K^{+}\pi^{-}\pi^{-} + \pi^{+} + p$             |
| $B^*N^a$                           | 6226    | 4 | 0   | 3/2-            | _                         | $qqqq\bar{b}(L=2)$      | $B^*N$             | 25.4(R)                 | B + N (Strong decay)                            |
| Dibaryons                          |         |   |     |                 |                           |                         |                    |                         |                                                 |
| Hª                                 | 2245    | 1 | 0   | $0^{+}$         | qqqqss                    | _                       | $\Xi N$            | 73.2(B)                 | ΛΛ (Strong decay)                               |
| <i>K</i> NN <sup>▶</sup>           | 2352    | 2 | 1/2 | 0 <sup>-c</sup> | qqqqqs(L=1)               | qqqqqq s <del>q</del>   | ΚNΝ                | 20.5(T)-174(T)          | $\Lambda N$ (Strong decay)                      |
| $\Omega \Omega^{a}$                | 3228    | 1 | 0   | 0+              | SSSSSS                    | _                       | $\Omega\Omega$     | 98.8(R)                 | $\Lambda K^- + \Lambda K^-$                     |
| $H_c^{++a}$                        | 3377    | 3 | 1   | $0^{+}$         | qqqqsc                    | _                       | $\Xi_c N$          | 187(B)                  | $\Lambda K^{-}\pi^{+}\pi^{+}+p$                 |
| $\bar{D}NN^{a}$                    | 3734    | 2 | 1/2 | 0-              | _                         | qqqqqq q <del>c</del>   | $\bar{D}NN$        | 6.48(T)                 | $K^{+}\pi^{-} + d, K^{+}\pi^{-}\pi^{-} + p + p$ |
| BNN <sup>a</sup>                   | 7147    | 2 | 1/2 | 0-              | _                         | qqqqqqqb                | BNN                | 25.4(T)                 | $K^+\pi^- + d, K^+\pi^- + p + p$                |

40



#### Summary I

1] Compact multiquark states can be understood from color spin flavor wave function:

- A strong attractive short range interaction is needed in the SU(3) broken limit
- Heavy quarks are needed to reduce extra Kinetic energy
  - $\rightarrow$  Tcc could be strongly bound

$$T^{1}_{cc}(ud\overline{c}\overline{c}) \rightarrow (\overline{D}^{0} + D^{*-}) \rightarrow K^{+}\pi^{-} + K^{+}\pi^{-}\pi^{-}$$

| threshold                                   | decay mode                                             | lifetime                   |
|---------------------------------------------|--------------------------------------------------------|----------------------------|
| $M_{T_{cc}} > M_{D^*} + M_D$                | $D^{*-}\bar{D}^{0}$                                    | hadronic decay             |
| $2M_D + M_\pi < M_{T_{cc}} < M_{D^*} + M_D$ | $\bar{D}^{0}\bar{D}^{0}\pi^{-}$                        | hadronic decay             |
| $M_{T_{cc}} < 2M_D + M_{\pi}$               | $D^{*-}K^{+}\pi^{-}, D^{*-}K^{+}\pi^{+}\pi^{-}\pi^{-}$ | $0.41\times 10^{-12}$ sec. |

- → Vertex detector: weakly decaying exotics : FAIR 10<sup>4</sup> D<sup>0</sup> /month, LHC 10<sup>5</sup> D<sup>0</sup>/month
- →  $T_{cc}$  production  $T_{cc}/D > 0.34 \times 10^{-4}$  RHIC > 0.8 x 10<sup>-4</sup> LHC

## Summary II

#### 2] Measurements from Heavy Ion can discriminate the structures

|                              | Normal<br>meson        | Compact<br>multiquark    | Molecules              | Resonance              |
|------------------------------|------------------------|--------------------------|------------------------|------------------------|
| Geometrical<br>configuration | D                      |                          |                        |                        |
| Examples                     | Nucleon,               | Тсс ,                    | Pc, d*,                | K*, ρ meson            |
| Production<br>rate           | = Statistical<br>Model | < < Statistical<br>Model | = Statistical<br>Model | < Statistical<br>Model |

# IV: Tribaryons

## and

## Short distance repulsive three body nuclear force



 Color spin interaction - General remarks Tribaryon configuration (Aaron Park)

$$-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s)$$

1) SU(2): Three nucleons

For SU(2) flavor:  $-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = \frac{4}{3} N(N-6) + 4I(I+1) + \frac{4}{3} S(S+1) + 2C_c$ 

For nucleon K=-8, But But Tribaryon (N=9) K>>0

2) SU(3): Including hyperons

| Flavor | $-\sum_{i\leq j}\lambda_i\lambda_j\sigma_i\cdot\sigma_j$ |                   |                   |                   |                   |  |  |
|--------|----------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|        | $S = \frac{1}{2}$                                        | $S = \frac{3}{2}$ | $S = \frac{5}{2}$ | $S = \frac{7}{2}$ | $S = \frac{9}{2}$ |  |  |
| 1      |                                                          | -4                | 83                |                   | 24                |  |  |
| 8      | 4                                                        | 8                 | $\frac{44}{3}$    | 24                |                   |  |  |
| 10     |                                                          | 20                |                   |                   |                   |  |  |
| 10     |                                                          | 20                |                   |                   |                   |  |  |
| 27     | 24                                                       | 28                | $\frac{104}{3}$   |                   |                   |  |  |
| 35     | 40                                                       |                   |                   |                   |                   |  |  |
| 35     | 40                                                       |                   |                   |                   |                   |  |  |
| 64     |                                                          | 56                |                   |                   |                   |  |  |
| V      | -24                                                      | -24               | -8                | 8                 | 24                |  |  |

For SU(3) flavor:  $-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = N(N-10) + 4C_F + \frac{4}{3}S(S+1) + 2C_C$ 

With one strangeness: least repulsive state is S=3/2, Flavor antidecuplet

$$K = 20 + \frac{20}{3} \left( 1 - \frac{mu}{ms} \right) + 24 \gg 0$$

All tribaryon channel is very repulsive

 $\rightarrow$  Three Baryon force should be repulsive with or without strangeness

• Effects of intrinsic quark three-body force

## $f^{abc}F_1^aF_2^bF_3^c$ $d^{abc}F_1^aF_2^bF_3^c$

### 1) Basic notation

$$\begin{bmatrix} F^{\alpha}, F^{\beta} \end{bmatrix} = if^{\alpha\beta\gamma}F^{\gamma} \\ \{F^{\alpha}, F^{\beta} \} = \frac{1}{3}\delta^{\alpha\beta} + d^{\alpha\beta\gamma}F^{\gamma} \\ [\bar{F}^{\alpha}, \bar{F}^{\beta}] = if^{\alpha\beta\gamma}\bar{F}^{\gamma} \\ \{\bar{F}^{\alpha}, \bar{F}^{\beta} \} = \frac{1}{3}\delta^{\alpha\beta} - d^{\alpha\beta\gamma}\bar{F}^{\gamma} .$$

$$\begin{bmatrix} f^{\alpha\beta\gamma}f^{\alpha\beta\rho} = 3\delta^{\gamma\rho} \\ d^{\alpha\beta\gamma}d^{\alpha\beta\rho} = \frac{5}{3}\delta^{\gamma\rho} \end{bmatrix}$$

$$C_1 = (F^{\alpha})^2 = -\frac{2i}{3} f^{\alpha\beta\gamma} F^{\alpha} F^{\beta} F^{\gamma} = -\frac{2i}{3} f^{\alpha\beta\gamma} \bar{F}^{\alpha} \bar{F}^{\beta} \bar{F}^{\gamma}$$

$$C_2 = d^{\alpha\beta\gamma}F^{\alpha}F^{\beta}F^{\gamma} = C_1(2C_1 - \frac{11}{6})$$
  
$$\bar{C}_2 = d^{\alpha\beta\gamma}\bar{F}^{\alpha}\bar{F}^{\beta}\bar{F}^{\gamma} = -C_1(2C_1 - \frac{11}{6})$$

f –type intrinsic quark three-body force

 $f^{abc}F_1^aF_2^bF_3^c$ 

1) Consider  $N_1$  quarks and  $N_2$  antiquarks so that  $N = N_1 + N_2$ .

we want to calculate  $T_{1} = \sum_{i \neq j \neq k} f^{\alpha\beta\gamma} F_{i}^{\alpha} F_{j}^{\beta} F_{k}^{\gamma}$ , where the subscripts denote "j" quark Start from  $F^{\alpha} = \sum_{i}^{N} F_{i}^{\alpha}$   $C_{1} = (F^{\alpha})^{2} = -\frac{2i}{3} f^{\alpha\beta\gamma} F^{\alpha} F^{\beta} F^{\gamma} = -\frac{2i}{3} f^{\alpha\beta\gamma} \bar{F}^{\alpha} \bar{F}^{\beta} \bar{F}^{\gamma}$   $\frac{3i}{2} C_{1}(N) = \sum_{ijk} f^{\alpha\beta\gamma} F_{i}^{\alpha} F_{j}^{\beta} F_{k}^{\gamma}$   $= \left(\sum_{i \neq j \neq k} + \sum_{two-are-equal} + \sum_{i=j=k}\right) f^{\alpha\beta\gamma} F_{i}^{\alpha} F_{j}^{\beta} F_{k}^{\gamma}$   $= \mathsf{T}_{1} + \mathsf{T}_{1-2} + \mathsf{T}_{1-3}$ 

• **f**-type intrinsic quark three-body force 
$$f^{abc}F_{1}^{a}F_{2}^{b}F_{3}^{c}$$

$$\frac{3i}{2}C_{1}(N) = \sum_{ijk} f^{\alpha\beta\gamma}F_{i}^{\alpha}F_{j}^{\beta}F_{k}^{\gamma}$$

$$= \left(\sum_{i\neq j\neq k} + \sum_{two-are-equal} + \sum_{i=j=k}\right) f^{\alpha\beta\gamma}F_{i}^{\alpha}F_{j}^{\beta}F_{k}^{\gamma}$$

$$= \mathsf{T}_{1} + \mathsf{T}_{1\cdot2} + \mathsf{T}_{1\cdot3}$$

$$\mathsf{T}_{1\cdot2} := \sum \left( f^{\alpha\beta\gamma}F_{i}^{\alpha}F_{i}^{\beta}F_{k}^{\gamma} + f^{\alpha\beta\gamma}F_{i}^{\alpha}F_{k}^{\beta}F_{i}^{\gamma} + f^{\alpha\beta\gamma}F_{k}^{\alpha}F_{i}^{\beta}F_{k}^{\gamma}\right)$$

$$= \sum \left( f^{\alpha\beta\gamma}F_{i}^{\alpha}F_{i}^{\beta}F_{k}^{\gamma} + f^{\alpha\beta\gamma}F_{i}^{\alpha}F_{k}^{\beta}F_{i}^{\gamma} + f^{\alpha\beta\gamma}F_{k}^{\alpha}F_{i}^{\beta}F_{k}^{\gamma}\right)$$

$$= \sum f^{\alpha\beta\gamma} \left( \frac{1}{2}[F_{i}^{\alpha}F_{k}^{\beta}] + \frac{1}{2}\{F_{i}^{\alpha}F_{k}^{\beta}\}\right)F_{k}^{\gamma}$$

$$= \sum f^{\alpha\beta\gamma} \left( \frac{1}{2}[F_{i}^{\alpha}F_{i}^{\beta}] + \frac{1}{2}\{F_{i}^{\alpha}F_{i}^{\beta}\}\right)F_{k}^{\gamma}$$

$$= \sum f^{\alpha\beta\gamma} \frac{i3}{2}f^{\alpha\beta\rho}F_{i}^{\rho}F_{k}^{\gamma}$$

$$= \frac{i3}{2}\left(F^{2} - \sum F_{i}^{2}\right)$$

$$= \frac{i3}{2}\left(C_{1}(N) - NC_{1}(q)\right)$$

Therefore  $T_1 = \sum_{i \neq j \neq k} f^{\alpha\beta\gamma} F_i^{\alpha} F_j^{\beta} F_k^{\gamma} = 0$ 

49

• d –type intrinsic quark three-body force

 $d^{abc}F_1^aF_2^bF_3^c$ 

1) Consider  $N_1$  quarks and  $N_2$  antiquarks so that  $N = N_1 + N_2$ .

we want to calculate  $T_2 = \sum_{i \neq j \neq k} d^{\alpha\beta\gamma} F_i^{\alpha} F_j^{\beta} F_k^{\gamma}$ , where the subscripts denote "j" quark

Start from 
$$F^{\alpha} = \sum_{i}^{N} F_{i}^{\alpha}$$
$$C_{2} = d^{\alpha\beta\gamma} F^{\alpha} F^{\beta} F^{\gamma} = C_{1} (2C_{1} - \frac{11}{6})$$
$$\bar{C}_{2} = d^{\alpha\beta\gamma} \bar{F}^{\alpha} \bar{F}^{\beta} \bar{F}^{\gamma} = -C_{1} (2C_{1} - \frac{11}{6})$$

$$C_{2}(N) = \sum_{ijk} d^{\alpha\beta\gamma} F_{i}^{\alpha} F_{j}^{\beta} F_{k}^{\gamma}$$
  
=  $\left(\sum_{i \neq j \neq k} + \sum_{two-are-equal} + \sum_{i=j=k}\right) d^{\alpha\beta\gamma} F_{i}^{\alpha} F_{j}^{\beta} F_{k}^{\gamma}$  =  $\mathsf{T}_{2} + \mathsf{T}_{2-2} + \mathsf{T}_{3-2}$ 

$$T_2 = \sum_{i \neq j \neq k} d^{\alpha\beta\gamma} F_i^{\alpha} F_j^{\beta} F_k^{\gamma}$$

Effects of intrinsic quark three-body force

$$\begin{split} C_2(N) &= \sum_{ijk} d^{\alpha\beta\gamma} F_i^{\alpha} F_j^{\beta} F_k^{\gamma} \\ &= \bigg( \sum_{i \neq j \neq k} + \sum_{two-are-equal} + \sum_{i=j=k} \bigg) d^{\alpha\beta\gamma} F_i^{\alpha} F_j^{\beta} F_k^{\gamma} \end{split} = \mathsf{T}_2 + \mathsf{T}_{2\text{-}2} + \mathsf{T}_{3\text{-}3} \end{split}$$

#### $T_{2-2}$ should be divided according to quark and antiquarks

(a) All quarks are quarks. The we can divide it into three terms depending on where the different quark appears

$$2 - 1nd = \sum \left( d^{\alpha\beta\gamma} F_i^{\alpha} F_i^{\beta} F_k^{\gamma} + d^{\alpha\beta\gamma} F_i^{\alpha} F_k^{\beta} F_i^{\gamma} + d^{\alpha\beta\gamma} F_k^{\alpha} F_i^{\beta} F_i^{\gamma} \right)$$
(37)

$$= 3\sum d^{\alpha\beta\gamma} \left( F_i^{\alpha} F_i^{\beta} F_k^{\gamma} \right)$$
(38)

 $d^{abc}F_1^aF_2^bF_3^c$ 

$$= 3\sum d^{\alpha\beta\gamma} \left(\frac{1}{2} [F_i^{\alpha} F_i^{\beta}] + \frac{1}{2} \{F_i^{\alpha} F_i^{\beta}\}\right) F_k^{\gamma}$$
(39)

$$= 3\sum d^{\alpha\beta\gamma} \left(\frac{1}{6}\delta^{ii}\delta^{\alpha\beta} + \frac{1}{2}d^{\alpha\beta\rho}F_i^{\rho}\right)F_k^{\gamma}$$
(40)

$$= 3\sum \left(\frac{1}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_k^{\gamma} + \frac{1}{2}d^{\alpha\beta\gamma}d^{\alpha\beta\rho}F_i^{\rho}F_k^{\gamma}\right)$$
(41)

$$= 3\sum \left(\frac{1}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_k^{\gamma} + \frac{1}{2}\frac{5}{3}\delta^{\gamma\rho}F_i^{\rho}F_k^{\gamma}\right)$$
(42)

$$= \sum \left(\frac{3}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_k^{\gamma} + \frac{5}{2}F_i^{\gamma}F_k^{\gamma}\right)$$
(43)

$$= \sum \left(\frac{3}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_k^{\gamma}\right) + \frac{5}{2}\left(F^2 - \sum F_i^2\right)$$
(44)

$$= \sum_{k=1}^{N_1} \left( \frac{3}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + \frac{5}{2} \left( C_1(N_1) - N_1 C_1(q) \right)$$
(45)

(b) All quarks are antiquarks.

$$2 - 2nd = 3\sum \left(\frac{1}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_{k}^{\gamma} - \frac{1}{2}d^{\alpha\beta\gamma}d^{\alpha\beta\rho}F_{i}^{\rho}F_{k}^{\gamma}\right)$$
  
$$= 3\sum \left(\frac{1}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_{k}^{\gamma} - \frac{1}{2}\frac{5}{3}\delta^{\gamma\rho}F_{i}^{\rho}F_{k}^{\gamma}\right)$$
  
$$= \sum \left(\frac{3}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_{k}^{\gamma} - \frac{5}{2}\bar{F}_{i}^{\gamma}\bar{F}_{k}^{\gamma}\right)$$
  
$$= \sum \left(\frac{3}{6}\delta^{ii}d^{\alpha\alpha\gamma}\bar{F}_{k}^{\gamma}\right) - \frac{5}{2}\left(\bar{F}^{2} - \sum \bar{F}_{i}^{2}\right) = \sum \sum \left(\frac{3}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_{k}^{\gamma}\right) - \frac{5}{2}\left(C_{1}(N_{2}) - N_{2}C_{1}(q)\right)$$

52

(c) Two quarks are quarks.

$$\begin{aligned} 2 - 3nd &= 3\sum \left(\frac{1}{6}\delta^{ii}d^{\alpha\alpha\gamma}\bar{F}_{k}^{\gamma} + \frac{1}{2}d^{\alpha\beta\gamma}d^{\alpha\beta\rho}F_{i}^{\rho}\bar{F}_{k}^{\gamma}\right) \\ &= 3\sum \left(\frac{1}{6}\delta^{ii}d^{\alpha\alpha\gamma}\bar{F}_{k}^{\gamma} + \frac{1}{2}\frac{5}{3}\delta^{\gamma\rho}F_{i}^{\rho}\bar{F}_{k}^{\gamma}\right) \\ &= \sum \left(\frac{3}{6}\delta^{ii}d^{\alpha\alpha\gamma}\bar{F}_{k}^{\gamma} + \frac{5}{2}F_{i}^{\gamma}\bar{F}_{k}^{\gamma}\right) \end{aligned}$$

(d) Two quarks are anti-quarks.

$$\begin{aligned} 2 - 4nd &= 3\sum \left(\frac{1}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_{k}^{\gamma} - \frac{1}{2}d^{\alpha\beta\gamma}d^{\alpha\beta\rho}\bar{F}_{i}^{\rho}F_{k}^{\gamma}\right) \\ &= \sum \left(\frac{3}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_{k}^{\gamma} - \frac{5}{2}\bar{F}_{i}^{\gamma}F_{k}^{\gamma}\right) \\ \end{aligned}$$

$$\begin{aligned} Adding all T_{2-2} &= 2nd = \sum^{all} \left(\frac{3}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_{k}^{\gamma}\right) + \frac{5}{2}\left(C_{1}(N_{1}) - N_{1}C_{1}(q)\right) \\ &- \frac{5}{2}\left(C_{1}(N_{2}) - N_{2}C_{1}(q)\right) + \sum \left(\frac{5}{2}F_{i}^{\gamma}\bar{F}_{k}^{\gamma} - \frac{5}{2}\bar{F}_{i}^{\gamma}F_{k}^{\gamma}\right) \\ &= \sum^{all} \left(\frac{3}{6}\delta^{ii}d^{\alpha\alpha\gamma}F_{k}^{\gamma}\right) + \frac{5}{2}\left(C_{1}(N_{1}) - C_{1}(N_{2})\right) - \frac{5}{2}C_{1}(q)\left(N_{1} - N_{2}\right) \end{aligned}$$

$$\mathbf{T}_{3-3} = \sum_{i=j=k} d^{\alpha\beta\gamma} \left( F_i^{\alpha} F_j^{\beta} F_k^{\gamma} + \bar{F}_i^{\alpha} \bar{F}_j^{\beta} \bar{F}_k^{\gamma} \right)$$
$$= (N_1 - N_2) C_1(q) \left( 2C_1(q) - \frac{11}{6} \right)$$

Summing all the contributions, we find

$$T_2 = C_1(N) \left( 2C_1(N) - \frac{11}{6} \right) - \frac{5}{2} \left( C_1(N_1) - C_1(N_2) \right) - (N_1 - N_2) C_1(q) \left( 2C_1(q) - \frac{13}{3} \right) - \sum \left( \frac{3}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma} F_k^{\gamma} \right) + C_1(N_2) \left( \frac{1}{6} \delta^{ii} d^{\alpha \alpha \gamma}$$

When we take the matrix element, the last term vanishes. Furthermore, for color singlet states,  $C_1(N) = 0$ , and also, the color state of quark and that of antiquark should be the same as the total is a color singlet. Therefore, we have

$$T_2 = -(N_1 - N_2)C_1(q)\left(2C_1(q) - \frac{13}{3}\right).$$
(68)

Therefore, for pentaqurk, it is the same as the baryon. For tetraquark, it is zero.

#### Summary - from quark picture

- 1] Compact multiquark states can be understood from color spin flavor wave function:
  - A strong attractive short range interaction is needed in the SU(3) broken limit
  - Heavy quarks are needed to reduce extra Kinetic energy
    - → Pc, d\*, X(3872), Zc: unlikely to be compact multiquark states as there are no strong attraction in these channels at compact configurations
    - → Tcc could be strongly bound  $T^1_{cc}(ud\overline{c}\overline{c}) \rightarrow (\overline{D}^0 + D^{*-}) \rightarrow K^+\pi^- + K^+\pi^-\pi^-$

| threshold                                   | decay mode                                             | lifetime                  |
|---------------------------------------------|--------------------------------------------------------|---------------------------|
| $M_{T_{cc}} > M_{D^*} + M_D$                | $D^{*-}\bar{D}^{0}$                                    | hadronic decay            |
| $2M_D + M_\pi < M_{T_{cc}} < M_{D^*} + M_D$ | $\bar{D}^{0}\bar{D}^{0}\pi^{-}$                        | hadronic decay            |
| $M_{T_{cc}} < 2M_D + M_{\pi}$               | $D^{*-}K^{+}\pi^{-}, D^{*-}K^{+}\pi^{+}\pi^{-}\pi^{-}$ | $0.41\times10^{-12}$ sec. |

- 2] Thee body nuclear force must be repulsive at short distance
  - $\rightarrow$  Magnitude of repulsion for given quantum number can be calculated
  - $\rightarrow$  Related to nuclear matter, Hyperon puzzle in neutron star

#### Summary : constituent quark model and compact Multiquark states

- Recently discovered Multiquark states, D\*, Pc, X(3872), Z are most likely molecular states
- A compact multiquark candidate: Tcc (cc ubar dbar)
- Nuclear two-body and three-body repulsion can be understood from Pauli Principle and color spin interaction
- Exotica measurements from heavy ion collision could discriminate the structure between a compact multiquark and a molecular configuration