

Unified description of baryons in a mean-field approach

Hyun-Chul Kim

Department of Physics, Inha University RCNP, Osaka University

Theory Seminar@ASRC, 17 January, 2018, Tokai, Japan

Content

- Introduction to mean-field approaches
- Light Baryons: Chiral symmetry
- Heavy Baryons: +Heavy-quark symmetry
- Exotic Baryons: Pentaquarks
- Excited Baryons & Confinement: required for a theory beyond the mean-field theory
- Outlook

Mean-Field Approximation

Simple picture of a mean-field approximation

Mean-field potential that is produced by all other particles.

- Nuclear shell models
- Ginzburg-Landau theory for superconductivity
- Quark potential models for baryons

Mean-Field Approximation

More theoretically defined mean fields

Given action, $S[\phi]$

 $\left.\frac{\delta S}{\delta \phi}\right|_{\phi=\phi_0} = 0$: Solution of this saddle-point equation ϕ_0

Key point: Ignore the quantum fluctuation.

How we can understand the structure of baryons, based on this mean field approach. This is the subject of the present talk.

Baryon in mean fields

- * A baryon can be viewed as a state of Nc quarks bound by mesonic mean fields (E. Witten, NPB, 1979 & 1983).
 - Its mass is proportional to Nc, while its width is of order O(1).
 - Mesons are weakly interacting (Quantum fluctuations are suppressed by 1/Nc: O(1/Nc).

Meson mean-field approach (Chiral Quark-Soliton Model)

* Baryons as a state of Nc quarks bound by mesonic mean fields.

 $S_{\text{eff}} = -N_c \text{Tr} \ln \left(-i\partial_{\mu} + S(\boldsymbol{r}) + P(\boldsymbol{r})i\gamma_5 + V_{\mu}(\boldsymbol{r})\gamma_{\mu} + A_{\mu}(\boldsymbol{r})\gamma_{\mu}\gamma_5 + T_{\mu\nu}(\boldsymbol{r})\sigma_{\mu} + i\hat{m} \right)$

* Key point: Hedgehog Ansatz

$$\pi^{a}(\mathbf{r}) = \begin{cases} n^{a}F(r), n^{a} = x^{a}/r, & a = 1, 2, 3\\ 0, & a = 4, 5, 6, 7, 8. \end{cases}$$

It breaks spontaneously $SU(3)_{\text{flavor}} \otimes O(3)_{\text{space}} \rightarrow SU(2)_{\text{isospin+space}}$ 12 profile functions are only allowed.

Diakonov, Petrov, Vladimirov, PRD 88, 074030 (2013)

system is stabilized

Light baryons in mean fields

$$\langle J_B J_B^{\dagger} \rangle_0 \sim e^{-N_c E_{\rm val} T}$$

Presence of Nc quarks will polarize the vacuum or create mean fields.

Light baryons in mean fields

$$E_{\rm cl} = N_c E_{\rm val} + E_{\rm sea}$$

Classical Nucleon mass is described by the Nc valence quark energy and sea-quark energy.

Light baryons in mean fields

- u, d
- u,d quark levels are classified by the grand spin K^P .
- s quark levels are classified by the grand spin J^P .
 - J = L + S

Grand spin: K = J + T

Lowest-lying light baryons

$$K = J + T = 0, \ T_8 = \frac{N_c}{2\sqrt{3}}$$

Right hypercharge

 $Y' = \frac{N_c}{3}$

 Nc quark gives the baryon number in the XQSM.

Ground state

Collective Quantization

Collective (Zero-mode) quantization

Collective Hamiltonian

Collective rotational Hamiltonian

Right hypercharge: Constraint on the quantization of the chiral soliton This constraint selects a tower of the allowed rotational excitations of the SU(3) hedgehog.

Success of the XQSM in the light baryon sector

- Connection to QCD via the instanton vacuum (natural scale) $\rho \approx 600 \,\mathrm{MeV}$
- The mass splittings of the lowest-lying hyperons
- All different types of baryon form factors
- Parton distribution amplitudes (u-d asymmetry, transversity)
- Quasi-parton distribution amplitudes
- GPDs

Singly heavy baryons in SU(3)

- In the heavy quark mass limit, a heavy quark spin is conserved, so lightquark spin is also conserved.
- * In this limit, a heavy quark can be considered as a color static source.
- * Dynamics is governed by light quarks.

* Valence quarks are bound by the meson mean fields.
* Light quarks govern a heavy-light quark system.
* Heavy quarks can be simply viewed as static color sources.

$$m{K}=m{J}+m{T}=0, \ \ T_8=rac{N_c-1}{2\sqrt{3}}$$
 Ground-state heavy baryons

Right hypercharge
$$Y' = \frac{N_c - 1}{3}$$

A heavy quark: Static color source to make a heavy baryon color singlet.

D. Diakonov, arXiv:1003.2157 [hep-ph].

States of the second second

 \bigcirc

Heavy quark as a color static source

Nc-1 light quarks govern a singly heavy baryon.

Nc-1 quarks represent heavy-baryon spectra.

 $Y' = \frac{N_c - 1}{3}$

Grand spin:
$$K=0
ightarrow T=J$$

- The lowest rotationally excited states $3 \times 3 = \overline{3} + 6$
- T=0 for a anti-triplet: J=0 for it. Combining a charm quark with spin 1/2, we have one anti-triplet.
- * T=1 for a sextet: J=1. We have two sextets with a charm quark.

SU(3) symmetry breaking

The collective Hamiltonian for SU(3) symmetry breaking

$$H_{\rm br} = \alpha D_{88}^{(8)} + \beta Y + \frac{\gamma}{\sqrt{3}} \sum_{i=1}^{3} D_{8i}^{(8)} J_i$$

In the light-quark sector, we have fixed already these dynamical parameters as

G. S. Yang, HChK, PTP, 128, 397 (2012).

SU(3) symmetry breaking

The collective Hamiltonian for SU(3) symmetry breaking

$$H_{\rm br} = \alpha D_{88}^{(8)} + \beta Y + \frac{\gamma}{\sqrt{3}} \sum_{i=1}^{3} D_{8i}^{(8)} J_i$$

In the light-quark sector, we have fixed already these dynamical parameters as

$$\alpha = -\frac{2m_s}{3}\sigma - \beta Y' = -(255.03 \pm 5.82) \text{ MeV}$$
$$\beta = -\frac{m_s K_2}{I_2} = -(140.04 \pm 3.20) \text{ MeV}$$
$$\gamma = \frac{2m_s K_1}{I_1} + 2\beta = -(101.08 \pm 2.33) \text{ MeV}$$
$$\alpha \to \bar{\alpha} = \frac{N_c - 1}{N_c}\alpha$$

G. S. Yang, HChK, PTP, 128, 397 (2012).

Hyperfine mass splittings (only new parameter)

$$\frac{\varkappa}{m_c} = (68.1 \pm 1.1) \text{ MeV}$$
$$\frac{\varkappa}{m_b} = (20.3 \pm 1.0) \text{ MeV}$$

Remind you that all the parameters are the same as in the light baryon sector except for the hyperfine interaction.

Hyperfine mass splittings (only new parameter)

Hyperfine splitting between different spin states

$$H_{LQ} = \frac{2}{3} \frac{\kappa}{m_Q M_{sol}} \mathbf{S}_{L} \cdot \mathbf{S}_Q = \frac{2}{3} \frac{\varkappa}{m_Q} \mathbf{S}_{L} \cdot \mathbf{S}_Q$$
$$\frac{\varkappa}{m_c} = (68.1 \pm 1.1) \text{ MeV}$$
$$\frac{\varkappa}{m_b} = (20.3 \pm 1.0) \text{ MeV}$$
$$\text{Remind you that all the parameters are the same as in the light baryon sector except for the hyperfine interaction.}$$

Hyperfine mass splittings (only new parameter)

Results for the charmed baryon masses

\mathcal{R}^Q_J	B_c	Mass	Experiment [17]	Deviation ξ_c
$\overline{f 3}^c_{1/2}$	Λ_c	2272.5 ± 2.3	2286.5 ± 0.1	-0.006
	$[\mathbf{I}]_{c}$	2476.3 ± 1.2	2469.4 ± 0.3	0.003
	Σ_c	2445.3 ± 2.5	2453.5 ± 0.1	-0.003
${f 6}^{c}_{1/2}$	Ξ_c'	2580.5 ± 1.6	2576.8 ± 2.1	0.001
,	Ω_c	2715.7 ± 4.5	2695.2 ± 1.7	0.008
	Σ_c^*	2513.4 ± 2.3	2518.1 ± 0.8	-0.002
${f 6}^{c}_{3/2}$	Ξ_c^*	2648.6 ± 1.3	2645.9 ± 0.4	0.001
/	Ω_c^*	2783.8 ± 4.5	2765.9 ± 2.0	0.006

The results are in remarkable agreement with the experimental data.

$$\xi_c = (M_{\rm th}^{B_c} - M_{\rm exp}^{B_c})/M_{\rm exp}^{B_c}$$

Results for the bottom baryon masses

\mathcal{R}^Q_J	B_b	Mass	Experiment [17]	Deviation ξ_b
$\overline{\mathbf{a}}^b$	Λ_b	5599.3 ± 2.4	5619.5 ± 0.2	-0.004
${f J}_{1/2}$	Ξ_b	5803.1 ± 1.2	5793.1 ± 0.7	0.002
	Σ_b	5804.3 ± 2.4	5813.4 ± 1.3	-0.002
${f 6}^b_{1/2}$	Ξ_b'	5939.5 ± 1.5	5935.0 ± 0.05	0.001
_/ _	Ω_b	6074.7 ± 4.5	6048.0 ± 1.9	0.004
	Σ_b^*	5824.6 ± 2.3	5833.6 ± 1.3	-0.002
${f 6}^b_{3/2}$	Ξ_b^*	5959.8 ± 1.2	5955.3 ± 0.1	0.001
	Ω_b^*	6095.0 ± 4.4		

 $\xi_b = (M_{\rm th}^{B_b} - M_{\rm exp}^{B_b})/M_{\rm exp}^{B_b}$
Results for the bottom baryon masses

$\overline{\mathcal{R}^Q_J}$	B_b	Mass	Experiment [17]	Deviation ξ_b
$\overline{\mathbf{p}}^{b}$	Λ_b	5599.3 ± 2.4	5619.5 ± 0.2	-0.004
$3_{1/2}$	Ξ_b	5803.1 ± 1.2	5793.1 ± 0.7	0.002
	Σ_b	5804.3 ± 2.4	5813.4 ± 1.3	-0.002
$6^{b}_{1/2}$	Ξ_b'	5939.5 ± 1.5	5935.0 ± 0.05	0.001
_, _	Ω_b	6074.7 ± 4.5	6048.0 ± 1.9	0.004
	Σ_b^*	5824.6 ± 2.3	5833.6 ± 1.3	-0.002
$6^{b}_{3/2}$	Ξ_b^*	5959.8 ± 1.2	5955.3 ± 0.1	0.001
-, -	Ω_b^*	6095.0 ± 4.4	_	

Prediction from the present work

$$\xi_b = (M_{\rm th}^{B_b} - M_{\rm exp}^{B_b}) / M_{\rm exp}^{B_b}$$

Gh.S. Yang, HChK, M. Polyakov, M. Praszalowicz, PRD 94, 071501(R) (2016)

LHCb Findings: New five Omega_cs

LHCb Collaboration, PRL 118 (2017) 182001

Belle Findings: Four Omega_cs confirmed

Four Ω_c s were confirmed by Belle Coll.

Refer to Masayuki Niiyama's talk

Belle Collaboration, hep-ex 1711.07927

LHCb Findings: New five Omega_cs

The Widths are rather small, even if we consider the fact that heavy baryons have smaller widths than light ones.

Resonance	Mass (MeV)	Γ (Me	V)	Yield	N_{σ}		
$\Omega_c(3000)^0$ 30	$000.4 \pm 0.2 \pm 0.1^+$	$^{-0.3}_{-0.5}$ 4.5 ± 0.6	± 0.3 1300 \pm	100 ± 80	20.4		
$\Omega_c(3050)^0$ 30	$050.2 \pm 0.1 \pm 0.1 \pm 0.1 \pm 0.1$	$^{-0.3}_{-0.5}$ 0.8 ± 0.2	± 0.1 970 \pm	60 ± 20	20.4		
		$< 1.2 \mathrm{MeV}, 9$	95% CL				
$\Omega_c(3066)^0$ 30	$065.6 \pm 0.1 \pm 0.3^+_{}$	$^{-0.3}_{-0.5}$ 3.5 ± 0.4	± 0.2 1740 \pm	100 ± 50	23.9		
$\Omega_c(3090)^0$ 30	$090.2 \pm 0.3 \pm 0.5^+$	$^{-0.3}_{-0.5}$ 8.7 ± 1.0	± 0.8 2000 \pm	140 ± 130	21.1		
$\Omega_c(3119)^0 = 32$	$119.1 \pm 0.3 \pm 0.9^+$	$^{+0.3}_{-0.5}$ 1.1 ± 0.8	± 0.4 480 \pm	70 ± 30	10.4		
		$< 2.6 \mathrm{MeV}, 9$	95% CL			LHCb Collabo	pration, 2007
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60\pm~15$	± 11 1670 \pm	450 ± 360		•	
$\Omega_{c}(3066)^{0}_{\rm fd}$			$700 \pm$	40 ± 140		•	
$\Omega_c(3090)^0_{ m fd}$			$220\pm$	60 ± 90			
$arOmega_c(3119)^0_{ m fd}$			$190 \pm$	$70\pm~20$		***	*
						•	
Ω_c Excited State	3000	3050	3066	3090		3119	3188
Yield	37.7 ± 11.0	28.2 ± 7.7	81.7 ± 13.9	86.6 ± 17.4	4	3.6 ± 6.9	135.2 ± 43.0
Significance	3.9σ	4.6σ	7.2σ	5.7σ		0.4σ	2.4σ
LHCb Mass	$3000.4 \pm 0.2 \pm 0.1$	$3050.2 \pm 0.1 \pm 0.1$	$3065.5 \pm 0.1 \pm 0.3$	3090.2 ± 0.3 ±	± 0.5 3	$3119 \pm 0.3 \pm 0.9$	$\overline{3188\pm5\pm13}$
Belle Mass	$3000.7 \pm 1.0 \pm 0.2$	$3050.2 \pm 0.4 \pm 0.2$	$3064.9 \pm 0.6 \pm 0.2$	$3089.3 \pm 1.2 \pm$	± 0.2	-	$3199\pm9\pm4$
(with fixed Γ)							

Belle Collaboration, hep-ex 1711.07927

Excited anti-triplets and sextets

Excited anti-triplets and sextets

Grand spin: $K^p = 1^-$

 Quantization of excited baryons yield two anti-triplet and FIVE sextets.

***T=0** for a anti-triplet: J=1 for it. Combining a charm quark with spin 1/2, we have two anti-triplets.

***** T=1 for a sextet: J=0,1,2 for 6. We have five sextets with a charm quark. (1/2), (1/2, 3/2), and (3/2, 5/2)!

Hyperfine splittings for excited anti-triplets

Candidates for excited anti-triplets

Hyperfine splittings for excited sextets

- The mean-field approach (XQSM) predicts **five excited sextet states**!
- The splitting between J=1 and J=2 is twice as large as that between J=0 and J=1.($\Delta_2 = 2\Delta_1$)

Assertion: Five Ω_c^* s belong to excited sextets.

J	S^P	$M [{ m MeV}]$	$\kappa'/m_c \; [{ m MeV}]$	$\Delta_J [{ m MeV}]$
0	$\frac{1}{2}^{-}$	3000		—
1	$\frac{1}{2}^{-}$	3050	16	61
	$\frac{3}{2}^{-}$	3066	10	01
2	$\frac{3}{2}^{-}$	3090	17	17
	$\frac{5}{2}$ -	3119		

Assertion: Five Ω_c^* s belong to excited sextets.

The HF splittings are very much **deviated** from what we have determined from the excited anti-triplet.

Assertion: Five Ω_c^* s belong to excited sextets.

Assertion: Three Ω_c^* s belong to excited sextets, whereas **two** Ω_c^* s with smaller widths are the members of the anti-15plet.

J	S^P	$M [{ m MeV}]$	$\kappa'/m_c \; [{ m MeV}]$	$\Delta_J [{ m MeV}]$	
0	$\frac{1}{2}^{-}$	3000	_	_	
1	$\frac{1}{2}^{-}$	3066	94	80	
	$\frac{3}{2}^{-}$	3090	24	02	
2	$\frac{3}{2}^{-}$	3222	input	input	
	$\frac{5}{2}^{-}$	3262	24	164	

What about other two Ω_c^* s?

We assume that Omega(3050) and Omega(3119) belong to the third rotational excitation of the ground states: They will be then pentaquarks!

Assertion: Three Ω_c^* s belong to excited sextets, whereas **two** Ω_c^* s with smaller widths are the members of the anti-15plet.

J	S^P	$M [{ m MeV}]$	$\kappa'/m_c \; [{ m MeV}]$	$\Delta_J [{ m MeV}]$	
0	$\frac{1}{2}^{-}$	3000	—	-	
1	$\frac{1}{2}^{-}$	3066	94	82	
	$\frac{3}{2}^{-}$	3090	24	02	
2	$\frac{3}{2}^{-}$	3222	input	input	
	$\frac{5}{2}^{-}$	3262	24	164	
$\kappa'/m_c \approx 30 \mathrm{MeV}$					

What about other two Ω_c^* s?

We assume that Omega(3050) and Omega(3119) belong to the third rotational excitation of the ground states: They will be then pentaquarks!

Assertion: Three Ω_c^* s belong to excited sextets, whereas **two** Ω_c^* s with smaller widths are the members of the anti-15plet.

What about other two Ω_c^* s?

We assume that Omega(3050) and Omega(3119) belong to the third rotational excitation of the ground states: They will be then pentaquarks!

Assertion: Three Ω_c^* s belong to excited sextets, whereas **two** Ω_c^* s with smaller widths are the members of the anti-15plet.

What about other two Ω_c^* s?

We assume that Omega(3050) and Omega(3119) belong to the third rotational excitation of the ground states: They will be then pentaquarks!

Anti-15plet

 $T = 1 \rightarrow J = 1$ Combined with a charm quark: $1 \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{3}{2} \in \overline{15}$

In the limit of infinitely heavy quark mass, 1/2 & 3/2 are degenerate, which will be lifted by a hyperfine interaction.

$$\begin{split} &\Omega_c(3050)1/2^+ \quad \Omega_c(3119)3/2^+ : \quad M_{\Omega_c(3/2^+)} - M_{\Omega_c(1/2^+)} \simeq 69 \text{ MeV }! \\ &\frac{\kappa}{m_c} = (68.1 \pm 1.1) \text{ MeV} \quad \text{ in excellent agreement with the ground-state value!} \end{split}$$

Anti-15plet

Exotic anti-15plet naturally arises from the XQSM.

- All parameters were fixed in the light baryon sector except for the hyperfine interaction.
- * Considering almost all theoretical uncertainties, we get the following: $\mathcal{M}_{\Omega_c} = (3140 3370) \,\mathrm{MeV}$

Interpretation of the LHCb data

Interpretation of the LHCb data

Interpretation of the LHCb data

How can one falsify the present idea?

- Anti-15plet consists of three Omega_cs (Isovector baryons).
- The same peaks with the same strength can be found not only in the $\Xi_c^+ K^-$ channel but also in $\Xi_c^+ K^0$ and $\Xi_c^0 K^-$.

 $\Omega_{c}(3050)$ & $\Omega_{c}(3119)$

LHCb Findings: New five Omega_cs

Bc baryons will decay weakly, if they exist. So, they should be stable.

D. Diakonov, arXiv:1003.2157 [hep-ph].

Collective operator for the strong vertices in SU(3) symmetric case

$$\mathcal{O}_{\varphi} = \frac{3}{M_1 + M_2} \sum_{i=1,2,3} \left[G_0 D_{\varphi \, i}^{(8)} - G_1 \, d_{ibc} D_{\varphi \, b}^{(8)} \hat{S}_c - G_2 \frac{1}{\sqrt{3}} D_{\varphi \, 8}^{(8)} \hat{S}_i \right] p_i$$

Decay widths

 a_1

 -3.509 ± 0.011

$$\Gamma_{B_1 \to B_2 + \varphi} = \frac{1}{2\pi} \overline{\langle B_2 | \mathcal{O}_{\varphi} | B_1 \rangle^2} \frac{M_2}{M_1} p$$

 a_2

 3.437 ± 0.028

G. Yang and HChK, PRC 92, 035206 (2015)

$$G_0 = -\frac{M+M'}{6f_{\varphi}}a_1$$
$$G_{1,2} = \frac{M+M'}{6f_{\varphi}}a_{2,3}$$

No additional free parameter!

 $f_{\pi} = 93 \,\mathrm{MeV}, \quad f_K = 1.2 f_{\pi}$

These parameters a_i have been determined by the hyperon semileptonic decays.

 a_3

 0.604 ± 0.030

Decay widths of the charm baryon sextet

#

this decay exp. work $1.89^{+0.09}_{-0.18}$ $\Sigma_c^{++}(\mathbf{6}_1, 1/2) \rightarrow \Lambda_c^+(\overline{\mathbf{3}}_0, 1/2) + \pi^+$ 1 1.93 $\Sigma_c^+(\mathbf{6}_1, 1/2) \rightarrow \Lambda_c^+(\overline{\mathbf{3}}_0, 1/2) + \pi^0$ |2|2.24< 4.6 $1.90 | 1.83^{+0.11}_{-0.19}$ $\Sigma_c^0(\mathbf{6}_1, 1/2) \rightarrow \Lambda_c^+(\overline{\mathbf{3}}_0, 1/2) + \pi^-$ 3 14.47 14.78 $^{+0.30}_{-0.19}$ $4 \left| \Sigma_{c}^{++}(\mathbf{6}_{1}, 3/2) \rightarrow \Lambda_{c}^{+}(\overline{\mathbf{3}}_{0}, 1/2) + \pi^{+} \right|$ $\Sigma_c^+(\mathbf{6}_1, 3/2) \rightarrow \Lambda_c^+(\overline{\mathbf{3}}_0, 1/2) + \pi^0$ 515.02< 17 $14.49 | 15.3^{+0.4}_{-0.5}$ $\Sigma_c^0(\mathbf{6}_1, 3/2) \rightarrow \Lambda_c^+(\overline{\mathbf{3}}_0, 1/2) + \pi^-$ 67 $\Xi_c^+(\mathbf{6}_1, 3/2) \to \Xi_c(\overline{\mathbf{3}}_0, 1/2) + \pi$ $2.35|2.14 \pm 0.19$ $\Xi_c^0(\mathbf{6}_1, 3/2) \rightarrow \Xi_c(\overline{\mathbf{3}}_0, 1/2) + \pi$ 8 $2.53|2.35\pm0.22$

No additional free parameter!

Experimental data are taken from the PDG Book.

Decay widths of the bottom baryon sextet

	1	this	
#	decay	work	exp.
1	$\Sigma_b^+(6_1, 1/2) \to \Lambda_b^0(\overline{3}_0, 1/2) + \pi^+$	6.12	$9.7^{+4.0}_{-3.0}$
2	$\Sigma_b^-(6_1, 1/2) \to \Lambda_b^0(\overline{3}_0, 1/2) + \pi^-$	6.12	$4.9^{+3.3}_{-2.4}$
3	$\Xi_b'(6_1, 1/2) \to \Xi_c(\overline{3}_0, 1/2) + \pi$	0.07	< 0.08
4	$\Sigma_b^+(6_1, 3/2) \to \Lambda_b^0(\overline{3}_0, 1/2) + \pi^+$	10.96	11.5 ± 2.8
5	$\Sigma_b^-(6_1, 3/2) \to \Lambda_c^0(\overline{3}_0, 1/2) + \pi^-$	11.77	7.5 ± 2.3
6	$\Xi_b^0(6_1, 3/2) \to \Xi_b(\overline{3}_0, 1/2) + \pi$	0.80	0.90 ± 0.18
7	$\Xi_b^-(6_1, 3/2) \to \Xi_b(\overline{3}_0, 1/2) + \pi$	1.28	1.65 ± 0.33

No additional free parameter!

Experimental data are taken from the PDG Book.

Decay widths of the charm baryon antidecapentaplet

#	docar	$ ext{this}$	\exp .
	uecay	work	
	$\Omega_c(\overline{15}_1, 1/2) \to \Xi_c(\overline{3}_0, 1/2) + K$	0.339	—
	$\Omega_c(\overline{15}_1, 1/2) \to \Omega_c(6_1, 1/2) + \pi$	0.097	_
	$\Omega_c(\overline{15}_1, 1/2) \to \Omega_c(6_1, 3/2) + \pi$	0.045	_
9	total	0.48	$0.8\pm0.2\pm0.1$

No additional free parameter!

Experimental data are taken from the LHCb measurement.

Note that the widths of Omega_cs are rather small!

Decay widths of the charm baryon antidecapentaplet

#	dooor	this	\exp .
	uecay	work	
	$\Omega_c(\overline{15}_1, 3/2) \to \Xi_c(\overline{3}_0, 1/2) + K$	0.848	
	$\Omega_c(\overline{15}_1, 3/2) \to \Xi_c(6_1, 1/2) + K$	0.009	—
	$\Omega_c(\overline{15}_1, 3/2) \to \Omega_c(6_1, 1/2) + \pi$	0.169	_
	$\Omega_c(\overline{15}_1, 3/2) \to \Omega_c(6_1, 3/2) + \pi$	0.096	—
10	total	1.12	$1.1\pm0.8\pm0.4$

No additional free parameter!

Experimental data are taken from the LHCb measurement.

Note that the widths of Omega_cs are rather small!

Summary

- ☆ We have aimed in this talk at how to interpret the newly found five Omega_cs by the LHCb within a mean-filed approach (Witten).
- The meson mean fields describe well both the lowest-lying singly heavy baryons and the excited anti-triplet.
- \Rightarrow We have predicted **Five** excited sextet and **Two** members in the anti-15plet.

Suggestions to the LHCb & Belle Collaborations

- * Can you perform the PWAs to determine the quantum numbers of Omega_c's?
- * Can you scan channels $\Xi_c^+ K^0$ and $\Xi_c^0 K^-$ in the range of the invariant masses between 3050 MeV and 3119 MeV to find isovector Omega_cs?

Extended XQSM: toward excited baryons

Physics for excited baryons

Spontaneous breaking

Relativistic Quantum field theory should be used for excited baryons ($q\bar{q}$ excitations).

Vector, Axial-vector, and tensor mean fields for higher-lying excited states

Question: How can one incorporate them to describe excited baryons?

Puzzles in excited baryon spectra

- Missing Resonances: Too many resonances were predicted. Additional symmetries?
- Mass orderings: N*(1440) & N*(1535), N*(1520)(3/2-) & N*(1535)(1/2-)
- Broad widths: Large coupling constants.
- Question: How can one resolve these puzzles?

How to incorporate quark confinement

 $\mathcal{S}_{\text{eff}} = -N_c \text{Trlog} \left[i \partial \!\!\!/ + i \hat{m} + i M(r) U^{\gamma_5} \right]$

How to incorporate quark confinement

 $\mathcal{S}_{\text{eff}} = -N_c \text{Trlog} \left[i\partial \!\!\!/ + i\hat{m} + iM(r)U^{\gamma_5}\right]$

 $M(r)U^{\gamma_5}(r) = S(r)\left[\cos P(r) + i\gamma_5\tau \cdot \mathbf{n}\sin P(r)\right]$

How to incorporate quark confinement

 $\mathcal{S}_{\rm eff} = -N_c \operatorname{Trlog}\left[i\partial \!\!\!/ + i\hat{m} + iM(r)U^{\gamma_5}\right]$

 $M(r)U^{\gamma_5}(r) = S(r)\left[\cos P(r) + i\gamma_5\tau \cdot \mathbf{n}\sin P(r)\right]$

S(r) Confining background (mean) field P(r) Pion background (mean) field

How to incorporate quark confinement

 $\mathcal{S}_{\text{eff}} = -N_c \text{Trlog} \left[i \partial \!\!\!/ + i \hat{m} + i M(r) U^{\gamma_5} \right]$

 $M(r)U^{\gamma_5}(r) = S(r)\left[\cos P(r) + i\gamma_5\tau \cdot \mathbf{n}\sin P(r)\right]$

S(r) Confining background (mean) field P(r) Pion background (mean) field

The confining and pion fields are non-linearly coupled within hedgehog Ansatz.

Hedgehog symmetry and mean field

Collective (Zero-mode) quantisation

$U_0 = \begin{bmatrix} e^{i\vec{n}\cdot\vec{\tau}\,P(r)} & 0\\ 0 & 1 \end{bmatrix} \, \operatorname{SU}(3)_{\mathrm{f}} \otimes \mathrm{O}(3)_{\mathrm{space}} \to \operatorname{SU}(2)_{\mathrm{iso+space}}$

- Breaking of this higher symmetry will reduce the number of baryon states!
- We keep the zero-mode quantization for the moment.
- For excited states, meson loops should come into play.
 (beyond the zero modes, beyond mean-field apprx.)
- Vector and axial-vector, and tensor mean fields should be considered! (Future works)
Confining background field

Critical distance

$$\sigma R_c \approx M, \quad \lim_{r \to \infty} S(r) = M \qquad \sigma = (0.44 \text{ GeV})^2$$

We need to saturate S(r) to avoid a divergence

$$S(r) = \sigma r \ \theta(R_c - r) + \sigma R_c \ \theta(r - R_c)$$

This is plausible, since the string should be broken into creating mesons.

Self-consistent pion background field

Classical Nucleon mass

[MeV]	Valence	Sea	Total
ChQSM M = 420 MeV	589	707	1296
Rc = 0.4 fm	701	557	1258
Rc = 0.7 fm	269	916	1185
Rc = 1.0 fm	X	916	916

Hyperon mass splitting to the first order of m_s

Hyperon mass splitting to the first order of m_s

Large σ -term \rightarrow

smaller strange quark mass

Excited valence quark

Schematic picture at large N_c

Excited valence quark for 8(J^P=1/2⁺)

$$K = J + T, K^{p} \neq 0$$

$$Y' = \frac{N_{c}}{3} = \frac{2}{\sqrt{3}}T_{8}$$

$$K^{p}=0^{+}$$

$$E=0$$

$$One-quark excitation from the valence level$$

$$H = H_{cl} + H_K + H_m$$
$$H_K = \frac{1}{2I_2} \sum_{a=4}^7 T_a^2 + \frac{(T - a_K K)^2}{2I_1}$$

$$H_m = \alpha D_{88}^{(8)}(R) + \beta Y + \frac{1}{\sqrt{3}} \gamma \sum_{i=1}^3 D_{8i}^{(8)}(R) T_i + \frac{1}{\sqrt{3}} \delta_K \sum_{i=1}^3 D_{8i}^{(8)}(R) K_i$$
$$\delta_K = \frac{2m_s}{3} \left(d_K - \frac{K_1}{I_1} a_K \right)$$

wave functions for excited baryons

$$\Psi_K(R, S, \chi) = \sqrt{\frac{\dim(R)(2J+1)}{2K+1}} \sum_{TT_3J_3} C_{TT_3J_3}^{KK_3} D_{Y'T'T_3', YTT_3}(R^{\dagger}) D_{J_3'J_3}(S^{\dagger}) \chi_{K_3}$$

$$H = H_{cl} + H_{K} + H_{m}$$

$$H_{K} = \frac{1}{2I_{2}} \sum_{a=4}^{7} T_{a}^{2} + \frac{(T - a_{K}K)^{2}}{2I_{1}}$$

$$T = K - J$$

$$H_m = \alpha D_{88}^{(8)}(R) + \beta Y + \frac{1}{\sqrt{3}} \gamma \sum_{i=1}^{\circ} D_{8i}^{(8)}(R) T_i + \frac{1}{\sqrt{3}} \delta_K \sum_{i=1}^{\circ} D_{8i}^{(8)}(R) K_i$$
$$\delta_K = \frac{2m_s}{3} \left(d_K - \frac{K_1}{I_1} a_K \right)$$

wave functions for excited baryons

$$\Psi_K(R, S, \chi) = \sqrt{\frac{\dim(R)(2J+1)}{2K+1}} \sum_{TT_3J_3} C_{TT_3J_3}^{KK_3} D_{Y'T'T_3', YTT_3}(R^{\dagger}) D_{J_3'J_3}(S^{\dagger}) \chi_{K_3}$$

$$H = H_{cl} + H_K + H_m$$

$$T = K - J$$

$$H_K = \frac{1}{2I_2} \sum_{a=4}^7 T_a^2 + \frac{(T - a_K K)^2}{2I_1}$$

$$H_m = \alpha D_{88}^{(8)}(R) + \beta Y + \frac{1}{\sqrt{2}} \gamma \sum_{a=4}^3 D_{8i}^{(8)}(R) T_i + \frac{1}{\sqrt{2}} \delta_K \sum_{a=4}^3 D_{8i}^{(8)}(R) K_a$$

$$H_m = \alpha D_{88}^{(8)}(R) + \beta Y + \frac{1}{\sqrt{3}} \gamma \sum_{i=1}^{N} D_{8i}^{(8)}(R) T_i + \frac{1}{\sqrt{3}} \delta_K \sum_{i=1}^{N} D_{8i}^{(8)}(R) K_i$$
$$\delta_K = \frac{2m_s}{3} \left(d_K - \frac{K_1}{I_1} a_K \right)$$

wave functions for excited baryons

$$\Psi_K(R, S, \chi) = \sqrt{\frac{\dim(R)(2J+1)}{2K+1}} \sum_{TT_3J_3} C_{TT_3J_3}^{KK_3} D_{Y'T'T_3', YTT_3}(R^{\dagger}) D_{J_3'J_3}(S^{\dagger}) \chi_{K_3}$$

Excited valence quark for 8(J^P=1/2⁺)

K=0+ → **K=0+** : No contribution from χ_K

	Y	Mass	Candida tes	Status	l(JP)	Δ_{calc}	Δ _{exp}
Ν	1	1458	1440	****	1/2(1/2+)	100	220
٨	0	1648	1660	***	0(1/2+)	100	220
Σ	0	1750	1660	****	1(1/2+)	102	
Ξ	-1	1889	1690	*	1/2(? [?])	139	

Excited valence quark for 8(J^P=1/2⁺)

K=0+ → **K=0+** : No contribution from χ_K

	Y	Mass	Candida tes	Status	l(JҎ)	Δ _{calc}	Δ _{exp}
Ν	1	1458	1440	****	1/2(1/2+)	190	220
٨	0	1648	1660	***	0(1/2+)	102	220
Σ	0	1750	1660	****	1(1/2+)	120	
Ξ	-1	1889	1690	*	1/2(??)	122	

Excited valence quark for 8(J^P=3/2⁺)

K=0+ → K=0+ : No contribution from χ_{K}

	Y	Mass	Candida tes	Status	l(J₽)	Δ_{calc}	Δ_{exp}
Δ	1	1826	1600	****	3/2(3/2+)		
Σ	0	1977	1660	*	1(3/2+)	151	
Ξ	-1	2128	1950	***	1/2(? [?])	151	
Ω	-2	2280	2250	***	0(??)	151	

Parameters for the baryons with negative parity

<u>ск, ак, and dк</u>

	ΔE(0+→1-) [MeV]	Ck	ак	dκ
ChQSM (M=420MeV)	240	0.377	0.217	0.213
Rc=0.42 fm	163	0.391	0.207	0.201
R _C =0.44 fm	249	0.398	0.202	0.198
R _C =0.46 fm	337	0.407	0.195	0.193
Diakonov <i>et</i> <i>al</i>	468		0.336	

Excited valence quark for 8(J^P=1/2-)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	l(JҎ)	Δ _{calc}	Δ _{exp}
Ν	1	1408	1535	****	1/2(1/2-)		
٨	0	1553	1670	****	0(1/2-)	145	135
Σ	0	1645				92	
Ξ	-1	1744	<u>?</u>	?	?	99	

Excited valence quark for 8(J^P=1/2-)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	l(JҎ)	Δ _{calc}	Δ _{exp}
N	1	1408	1535	****	1/2(1/2-)		
٨	0	1553	1670	****	0(1/2-)	145	135
Σ	0	1645				92	
Ξ	-1	1744	<u>?</u>	?	?	99	

Excited valence quark for 8(J^P=3/2-)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	l(JҎ)	Δ _{calc}	Δ _{exp}
Ν	1	1432	1520	****	1/2(3/2-)		
٨	0	1602	1690	****	0(3/2-)	170	170
Σ	0	1705	1670	****	1(3/2-)	103	-20
Ξ	-1	1824	1820	***	1/2(3/2 ⁻)	119	150

Excited valence quark for 8(J^P=3/2-)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	I(JҎ)	Δ_{calc}	Δ _{exp}
Ν	1	1432	1520	****	1/2(3/2 ⁻)		
٨	0	1602	1690	****	0(3/2-)	170	170
Σ	0	1705	1670	****	1(3/2 ⁻)	103	-20
Ξ	-1	1824	1820	***	1/2(3/2 ⁻)	119	150

Excited valence quark for 10(J^P=1/2-)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	l(JҎ)	Δ _{calc}	Δ _{exp}
Δ	1	1669	1620	****	3/2(1/2 ⁻)		
Σ*	0	1808	1750	***	1(1/2 ⁻)	139	130
Ξ*	-1	1947	<u>1900</u>	?	?	139	
Ω	-2	2085	<u>2050</u>	?	?	139	

Predictions by V. Petrov

Excited valence quark for 10(J^P=3/2-)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	I(J [₽])	∆ _{calc}	Δ _{exp}
Δ	1	1726	1700	****	3/2(3/2-)		
Σ*	0	1862	<u>1850</u>	?	?	136	
Ξ*	-1	1999	<u>2000</u>	?	?	136	
Ω	-2	2135	<u>2150</u>	?	?	136	

Predictions by V. Petrov

What is missing in this approach?

- Meson-loop corrections (1/Nc): So far, the approach is just like a mean-field approach. We have to go beyond mean-field approx.: RPA-like meson-loop contributions.
- qqbar excitations more than pions: vector, Axialvector, and tensor mean fields and meson loops for higher-lying excited states

They will be future works: To build up a realistic model of describing excited baryons

Though this be madness, yet there is method in it.

Hamlet Act 2, Scene 2

Thank you very much!