Magnetic field measurement of the S-2S D1 electromagnet

Kyoto University T.Nanamura

Contents

Introduction

- Spectroscopy of Ξ-hypernuclei
- Development of S-2S
- S-2S D1 magnetic field measurement
 - Instruments
 - Basic characteristics of S-2S D1
 - Field mapping
- Improvement of calculated magnetic field map
- Momentum resolution of S-2S

Study of Xi-hypernuclei

- What can we know from Ξ -hypernuclei ?
 - baryon-baryon interaction(Ξ -N, Λ - Λ)
 - role of multi-strangeness system in NS core
- Spectroscopic study via the ¹²C(K⁻,K⁺) reaction
 - BNL-E885 experiment
 - Suggested existence of ¹²_EBe
 - Estimated V_{Ξ} and $d\sigma/d\Omega$
 - V_{Ξ} ~-14 MeV
 - d σ /d Ω =89±14nb/Sr (θ <8°)
 - J-PARC E05 pilot run (2015)
 - SKS was used as the spectrometer for K+
 - Better missing mass resolution achieved
 - Observe significant excess in bound region

P. Khaustov et al., PRC 61 (2000) 054603

Why do we aim for better resolution ?

- To observe Ξ-hypernuclear state definitely as peak(s) in missing mass spectra
- To resolve excited states of Ξ -hypernuclei
 - Key to verify shell model and baryon-baryon interaction model
 - $\Delta E < 2$ MeV is essential

J-PARC E05 with S-2S

- New spectrometer S-2S
 (Strangeness -2 Spectrometer)
 - Consists of two Q magnets and D magnet
 - Acceptance $\sim 60 \text{ msr}$
 - Momentum resolution $\Delta p/p = 6 \times 10^{-4}$ (FWHM)
 - \rightarrow better missing mass resolution and statistics

1.8 GeV/c K-

 $\Delta p/p=1.0 \times 10^{-3}$

D1

Q2

Q1

S-2S Q1, Q2 magnet

Q1 (vertical focus) Maximum gradient: 8.7 [T/m] aperture: 31 [cm] weight:37 [Ton] W×H×L:2.4 × 2.4 × 0.88 [m³]

Q2 (horizontal forcus) Maximum gradient: 5.0 [T/m] aperture: 36 [cm] Weight:12 [Ton] $W \times H \times L$:2.1 \times 1.54 \times 0.5 [m³]

S-2S D1 magnet

End guard :reducing leakage magnetic field

Max current:2500 [A] 1.475 [T] Central momentum: 1.38 [GeV/c] Pole gap: $800 \times 320 \times 3650$ [m³] weight:86 [Ton]

Purpose of magnetic field mesurement

- In experiments with S-2S,we analyze K+ momentum using calculated magnetic field map
 - Measurement for actual setup is difficult
- Error of magnetic field may make resolution worse.

Instruments

Field mapping system

Field mapping system

Mover Range:1000×450×130 mm

3-axis hall probe (Lake shore MMZ-2508-UH)

放射化物保管部覆

Limit switch

Field mapping system:side view

Field mapping system:side view

Base plate

Field mapping system:side view

- Connecting hall probe, mover, NMR probe with PC
- Using excel-VBA macro

Connecting hall probe, mover, NMR prove with PC
Using excel-VBA macro

x [mm] y [mm] z [mm] 置き方 12	
<u>現在位直表示</u> <u>31.75</u> <u>38.69</u> 0.04	
测定開始 强制終了 waittime[ms] 2000 测定再開	
測定開始時刻 2016/12/25 10:56 測定終了時刻 2016/12/25 11:51 ①list up points we want measure	
測定点番号 設定値 (機械座標) 磁場	
x y z x y z NMRdat NMR	改行削除 NMR磁場[T] .344 1 474344
2 681.75 88.69 0.04 -0.001092 0.04435 0.05358 ¹⁴⁷⁴³⁴³ 1474:	343 1.474343
3 681.75 138.69 0.04 -0.001366 0.04431 0.05354 ¹⁴⁷⁴³³⁹ 1474:	.339 1.474339
4 681.75 188.69 0.04 -0.001783 0.04421 0.05355 ¹⁴⁷⁴³⁴¹ 14743	341 1.474341
5 681.75 238.69 0.04 -0.002555 0.04407 0.05356 ¹⁴⁷⁴³³⁹ 14743	.339 1.474339
6 681.75 288.69 0.04 -0.003893 0.04382 0.05353 ¹⁴⁷⁴³⁵¹ 14743	.351 1.474351
7 681.75 338.69 0.04 -0.006336 0.04365 0.05292 1474345 14743	345 1.474345
8 681.75 388.69 0.04 -0.01022 0.04341 0.05039 ¹⁴⁷⁴³³⁹ 14743	339 1.474339
9 681.75 438.69 0.04 -0.014408 0.04213 0.04338 ¹⁴⁷⁴³⁴³ 14743	343 1.474343
10 681.75 438.69 20.04 -0.013067 0.04586 0.03796 ¹⁴⁷⁴³³⁹ 14743	339 1.474339
11 681.75 388.69 20.04 -0.010793 0.05016 0.04274 1474345 14743	.345 1.474345

Connecting hall probe, mover, NMR prove with PC
Using excel-VBA macro

		坦大位罢主 子	x [mm]	y [mm]	z [mm]	置き方		12			
		現任世世衣小	31.75	38.69	0.04						
	(測定開始	②push l	outton:st	art to m	easure	2000		測定再開		
測定開始時 測定終了時	寺刻 寺刻	2016/12/25 10:56 2016/12/25 11:51	1)list	up poin	ts we wa	nt measure					
		測定点番号		設定値(機械座標)		1	磁場				
			x	У	z	x	У	Z	NMRdat	NMR改行削除	NMR磁場[T]
		1	681.75	38.69	0.04	-0.000849	0.04527	0.05327	14/4344	1474344	1.474344
		2	681.75	88.69	0.04	-0.001092	0.04435	0.05358	1474343	1474343	1.474343
		3	681.75	138.69	0.04	-0.001366	0.04431	0.05354	1474339	1474339	1.474339
		4	681.75	188.69	0.04	-0.001783	0.04421	0.05355	1474341	1474341	1.474341
		Ę	681.75	238.69	0.04	-0.002555	0.04407	0.05356	1474339	1474339	1.474339
		6	681.75	288.69	0.04	-0.003893	0.04382	0.05353	1474351	1474351	1.474351
		7	681.75	338.69	0.04	-0.006336	0.04365	0.05292	1474345	1474345	1.474345
		٤	681.75	388.69	0.04	-0.01022	0.04341	0.05039	1474339	1474339	1.474339
		g	681.75	438.69	0.04	-0.014408	0.04213	0.04338	1474343	1474343	1.474343
		10	681.75	438.69	20.04	-0.013067	0.04586	0.03796	1474339	1474339	1.474339
		11	681.75	388.69	20.04	-0.010793	0.05016	0.04274	1474345	1474345	1.474345

Connecting hall probe, mover, NMR prove with PC
Using excel-VBA macro

		旧たけ業まこ	x [mm]	y [mm]	z [mm]		置き方	12			
		現住世直衣示	31.75	38.69	0.04						
	(測定開始	②push l	outton:st	art to m	easure	2000	Donomo	測定再開	l l	raha
測定開始B 測定終了B	侍刻 侍刻	2016/12/25 10:56 2016/12/25 11:51	(1)list	up poin	ts we wa	nt measu	ıre	and reco	ord field	value	orobe
		測定点番号		設定値 (機械座標)			磁場				
			x	У	z	x	У	Z	NMRdat 1474344	NMR改行削除	NMR磁場[T]
		1	681.75	38.69	0.04	-0.000849	0.04527	0.05327		1474344	1.474344
		2	681.75	88.69	0.04	-0.001092	0.04435	0.05358	1474343	1474343	1.474343
		3	681.75	138.69	0.04	-0.001366	0.04431	0.05354	1474339	1474339	1.474339
		4	681.75	188.69	0.04	-0.001783	0.04421	0.05355	1474341	1474341	1.474341
		5	681.75	238.69	0.04	-0.002555	0.04407	0.05356	1474339	1474339	1.474339
		6	681.75	288.69	0.04	-0.003893	0.04382	0.05353	1474351	1474351	1.474351
		7	681.75	338.69	0.04	-0.006336	0.04365	0.05292	1474345	1474345	1.474345
		8	681.75	388.69	0.04	-0.01022	0.04341	0.05039	1474339	1474339	1.474339
		9	681.75	438.69	0.04	-0.014408	0.04213	0.04338	1474343	1474343	1.474343
		10	681.75	438.69	20.04	-0.013067	0.04586	0.03796	1474339	1474339	1.474339
		11	681.75	388.69	20.04	-0.010793	0.05016	0.04274	1474345	1474345	1.474345

operation characteristics S-2S D1 magnet and measuring system

15

Long-term stability

very stable. (σ = 1.6µT)

• From excitation @1500A, we had taken NMR data for about 90minutes. (every 30seconds) Time dependance of NMR value @1500A 16

Excitation and hysteresis curve

- Changing current and taking value of NMR
- $0A \rightarrow 300A \rightarrow 500A \rightarrow \cdots \rightarrow 2500A (UP)$
- $2500A \rightarrow 2300A \rightarrow \cdots \rightarrow 500A \rightarrow 0A (DOWN)$
- $0A \rightarrow 1100A \rightarrow 1500A \rightarrow 2000A (UP2)$

→hysteresis effect is enough small.

How long should we wait to take data?

- When the mover move, the position of hall probe may oscillate and therefore measured magnetic field will oscillate.
- @1500A
- Moving x±5 cm, y±5cm, z± 5cm(and composition of these shift)
 read hall probe value every 200ms
 - during 12seconds from moving.
- When we wait two seconds , magnetic field vary within 0.05%.

Magnetic field value normalized by average of last 2 seconds

S-2S D1 magnetic field map measurement

Overview of measurement

• Area : 800×320×1700 mm³ (DS), 400×320×1100 mm³ (US)

Transformation between coordinates

- Measured data
 - (x,y,z), (b_X, b_Y, b_Z)
- Calculated data
 - $\quad (X,Y,Z), (B_X,B_Y,B_Z)$
- Transformation measured data (x, y, z, b_X , b_Y , b_Z) to (X,Y,Z), (Bx,By,Bz)
 - Decision 9 parameters by survey and fitting to reproduce symmetry.
 - (position shift : δx , δy , δz mover tilt : $\delta \Phi x$, $\delta \Phi y$, $\delta \Phi z$ probe tilt $\delta \theta x$, $\delta \theta y$, $\delta \theta z$)
- position(x,y,z) \rightarrow (X,Y,Z)
 - Position of origin
 - Mover tilt
 - $\rightarrow \delta X < 0.1 \text{ [mm]}$
- Magnetic field(b_X, b_Y, b_Z) \rightarrow (B_X, B_Y, B_Z)
 - Probe tilt
 - NMR correction $\rightarrow \Delta \theta = 0.002 \text{ [rad]}$

Z=o

Error evaluation

- Error from hall probe σ_{Hall}
 - Using data of same point stopping probe
- Error from position precision σ_{mover}
 - Using data of same point moving probe
- Error from size of hall elements σ_{size}
 - Hall element is 750µm-radius disk
 - Calculated $\frac{\partial B}{\partial x}$ from measured result and propagation

• ΔB	$^{2}=\sigma^{2}_{Hall}$	$+\sigma^2_{\text{mover}}+\sigma^2$	σ^{2}_{size}	For ΔB , σ_{size} is dominant
成分	σ _{Hall} [mT]	σ _{mover} [mT]	σ _{size} [mT]	Δ B [mT]
D			1	

			- -	
B _X	0.03	0.01	0.06	0.06
B _Y	0.03	0.02	<1.6	1.6 (near pole end), 0.20 (others)
B _Z	0.03	0.1	<1.4	1.4 (near pole end) , 0.22 (others)

Improvement of calculated magnetic field

23

Calculated magnetic field

- Calculate by OPERA-3D/TOSCA
- modeling : made according to drawing ,vertical symmetry
- BHcurve : base is pure iron: tune to reconstruct Q1 magnet

- Mesh size
 - yoke:30 mm, area (particle passing):20mm
 - others:100mm

Compare with calculated field

• DB_Y=(B_Y measured)-(B_Y calculated)

- Trend a:wide DBY distribution near pole end(σ=2.8mT)
- Trend b:narrow DBY distribution in other area(σ =0.7mT)

Which region of BHcurve we tune ?

- There is large difference near end guard
 - On Iron, B>1.8 T, (H>10000)
 - Tune BH curve in this region

Tuning BH curve(1)

- Changing slope of BH curve (μ) to 75 %, comparing original.

27

- Scaling with central magnetic field
- Different trend in inner of magnet, similar trend near end guard.
- Dividing BH curve between yoke and end guard.

Tuning BH curve(2)

- Changing BH curve of end guard , compare with measured one.
 - BH curve of SS400 is best.
 - Checking drawings, actually end guard was made of SS400.
 - We use this calculated magnetic field.

BHcurve

Compare with calculated field again

Distribution of DB_Y=(BY measured)--(BY calculated) became narrow.

- Near pole end:σ=1.3 mT (before:2.8mT)
- other area: σ =0.4mT (before:0.7mT)
 - Comparable to measurement errors: σ =1.6 mT, 0.2 mT
- Reducing position dependence is effective.

Evaluating momentum resolution of S-2S

30

Momentum resolution with errors

• Analysis map and momentum resolution

	Bana1	Bana2	Bana3
R	5.3×10 ⁻⁴	5.3×10 ⁻⁴	5.5×10^{-4}
$\Delta \mathrm{p}_\mathrm{center}$ [MeV/c]	-0.2	-1.0	-0.2

- Difference of Bana has little effect.
 - Considering BL product
 - whole D magnet:5.7 [Tm], near end guard:0.6 [Tm]

Summary

- We are preparing spectroscopy of Ξ -hyper nuclei with S-2S
- We constructed field mapping system and get magnetic field map.
 - Measurement errors<1.6 [mT]
- We improve calculated magnetic field map
 - BH curve of end guard was different \rightarrow modified
 - Calculated map is consistent with measured one in measurement errors.
- Evaluating momentum resolution of S-2S
 - 5.5 \times 10⁻⁴ for 1.3GeV K+ from simulation
 - We are waiting for confirmation in actual experiment!

My feelings and advice

- Instruments
 - Because this hall probe is long , handling and alignment is troublesome.
 - Limit switch is important(both software and hardware).
 - If leakage magnetic field is large(~100 mT?),hardware limit of mover will work by mistake.
- "If you use calculated magnetic field, Is magnetic field measurement essential ?"
 - If you are sure that modeling and BH curve is right, you don't need to measure magnetic field map in detail.
 - Points on symmetry plane or points characterizing the magnet (e.g. central orbit of D magnet) have priority.

backup

39

Standard and resolution of survey

- We set two theodolite and level on standard line.
- Move probe to see marking in center of theodolite and record value of mover moved.
- We could resolve 25µm \rightarrow angler resolution \sim 0.01 deg.

Probe almost fixed this two point

X standard (336mm from pole tip, 20mm from End guard)

Z standard (2m height)

Example of result :main components

• Fitting B_Y with Enge function $f(Z) = \frac{1}{1 + e^{p(Z-s)}} : p(x) \text{ polynomial}$

Confirm Maxwell equations

div B and components of rot B is distributed around o
Fulfill Max well equations

Picture of dead hall probe

