

Prospect of strangeness nuclear physics at J-PARC (personal view)

J-PARCでのストレンジネス核物理の展望

H. Tamura Tohoku University 東北大学理学研究科 田村 裕和

Contents

- 1. Introduction---why strangeness?
- 2. Recent results at J-PARC
- 3. Future Prospect
 - 3.1 Hyperon puzzle and density dependence

3.2 Modification of baryons in nuclear matter

4. Hadron Hall Extension and Heavy Ion Acceleration

at J-PARC

of YN interaction

5. Summary

1. Introduction ---- why strangeness?

Key questions in nuclear force

- Origins of the short range forces such as repulsive core and LS force?
- The short-range strong repulsion almost cancelled by the long-range strong attraction. Why?
- How should we understand Baryon-Baryon forces in a unified way?
- How is the high density matter in neutron stars?
- => Give answers
 - by adding s quarks and extending NN -> BB forces nuclear matter -> baryonic matter

How well do we know BB interactions ?

Due to short lifetimes (10⁻¹⁰ s) of hyperons(Y) YN interactions have been studied using hypernuclei rather than YN scattering experiments

Exp's running or planned at J-PARC etc.

World of matter made of u, d, s quarks

by M. Kaneta inspired by HYP06 conference poster

Recent results and plans on Strangeness NP

2. Recent results at J-PARC

2.1 γ spectroscopy of Λ hypernuclei

-- Charge symmetry breaking--

- almost OK. (But ΛN - ΣN force is not well studied yet.)
 - => go to s-shell and sd-shell (J-PARC E13)

NPA 754 (2005) 58c

EPJ A33 (2007) 243 PTEP (2015) 081D01 Λ -PRL 86 (2001) 4255 PRC 65 (2002) 034607

PRC 77 (2008) 054315

PRL 93 (2004) 232501 EPJ A33 (2007) 247

<u>Charge Symmetry Breaking</u> <u>in A=4 hypernuclei</u>

cf. $B(^{3}H) - B(^{3}He) - EM$ effect ~70 keV

CSB effect in ΛN force ($p\Lambda \neq n\Lambda$) is much than in NN force ($pp \neq nn$)

Hyperball-J

٢S

C3

Pulse-tube

refrigerator

97

Ge cooled down to ~70K (c.f. 92K w/LN2) to reduce radiation damage Fast background suppressor made of PWO

 ΔE = 3.1(1) keV at 1.33 MeV Eff. = 5.4% @1 MeV with 28 Ge(re=60%) T. Koike et al., NIM A770 (2015) 1

Up side (Target view)

What does it mean?

- Existence of a large CSB effect confirmed only from γ-ray data
- Suggesting the old emulsion data reliable from MAMI data
- Large <u>spin dependence</u> in CSB effect

Ab-initio calc. including Σ⁺Σ⁻ mass difference
 + CSB in BB force (Nijmegen SC97e) =>ΔB_Λ(0⁺) ~70 keV.
 Nogga et al., PRL 88 (2002) 172501

- CSB in ΛN force seems to be sensitive to ΛΣ coupling (Scaler ΛΣ coupling -> ~250 keV) A. Gal, PLB 744 (2015) 352
- ChEFT force makes situation better. D. Gazda and A. Gal, PRL 116 (2016) 122501

-> CSB is a good probe to test BB interactions

2. Recent results 2.2 Ξ hypernuclei and Ξ atoms

Discovery of **E-nuclear** bound system

Newly developed "Overall scanning method" applied to KEK E373 emulsions

K. Nakazawa et al. PTEP 2015, 033D02 物理学会論文賞

uniquely identified as $\Xi^- + {}^{14}N \rightarrow {}^{10}_{\Lambda}Be + {}^{5}_{\Lambda}He$

"Kiso event"

 $B_{\Xi^-}=4.38\pm0.25 \text{ MeV} - 1.11\pm0.25 \text{ MeV}$

¹⁰_ABe production : in the ground state — in the highest excited state 3D atomic state of the Ξ^{-14} N system (0.17 MeV)

The first evidence for a deeply bound Ξ state -> Ξ -nucleus is attractive

<u>E-Hypernuclear Spectroscopy via (K⁻,K⁺) Reaction</u></u>

Nagae et al., J-PARC E05

¹²C (K⁻,K⁺) ${}^{12}_{\Xi}$ Be with SKS spectrometer

Extremely strong three-body YNN force necessary, or, deconfined quark matter exists?

More S=-2 events with emulsion

J-PARC E07 K. Nakazawa et al.

Collect ~10² $\Lambda\Lambda$ hypernuclear events from ~10⁴ Ξ_{stop}^{-}

- Confirm $\Lambda\Lambda$ int. and extract $\Lambda\Lambda-\Xi N$ effect
- More Ξ-nuclear events -> Ξ-N interaction

Measure Ξ⁻ -atomic X-rays with Ge detectors

- Shift and width of X-rays -> Ξ-nuclear potential
- Ξ^- absorbed events identified from emulsion image-> no background

without using emulsion

 $\blacktriangle \Xi^{-}$ atom X-ray energy

3. Future prospect

3.1 Hyperon puzzle and density dependence of YN interaction

Mysteries of Neutron Star Matter

Inner crust Pasta nuclei

Inner Core: Various possibilities But at least Λ hyperon should appear at ρ = 2~3 ρ_0

Attractive AN interaction and hyperon mixing

 $\Rightarrow U_{\Lambda}(\rho_0) = -30 \text{ MeV} (~2/3 \text{ of } U_N)$ is well established.

=> Λ must appear at ρ = 2~3 ρ_0

Hyperon puzzle

- At least Λ should appear at $\rho = 2.0 \sim 2.5 \rho_0$
- When hyperons or K^{bar} appear, EOS becomes too soft to support massive NS with >1.5M_☉

Reliable observation <--> of two NSs with~2.0M

Present nuclear physics has been (semi-)phenomenologically made using experimental data around ρ_0 only -> No predictable power for $\rho > \rho_0$

How to solve?

Introduce repulsion in YNN, YYN, YYY as well as NNN

- Density dep. in coupling constants ρ^4 term in RMF, Multi-Pomeron exch.
- How to fix their strengths is a problem Same as NNN?

Use HI collision data ChEFT framework Lattice QCD?

- Relativistic effect, Pauli in baryon mixing
- Quark Meson Coupling model
- Phase transition to quark matter
- or quark/hadron crossover (hybrid matter)

Hyperon puzzle

Property of 3-body nuclear force (NNN)

Chiral effective field theoryによる3体力

G. Hagen et al., PRL 109 (2012) 032502

Equation Of State from Experiments

Equation Of State from Experiments

How to experimentally approach this problem?

Ch-EFT interactions with hyperons (Extension to SU(3)_f) Haidenbauer, Weise, et al. But contact terms cannot be determined well => High statistics scattering data necessary Interactions both in free space
input to ChEFT and many-body theories and in nuclear matter are necessary Density-dependent int. (= 3-body forces)

- YN int. in free space :
 - => YN scattering experiments, Precise data of few body hypernuclei
 E40 (Miwa): Σ[±]p scattering
 Beyond E40: Λp scattering, spin observables
- YN int. in nuclear matter :

=> Precise data of Λ 's single particle energies (B_{Λ}) for medium-heavy HN High resolution (e,e'K⁺), (π ⁺,K⁺) spectroscopy γ -spectroscopy

Baryon Baryon interaction by Lattice QCD

6 independent forces in flavor SU(3) symmetry

Baryon Baryon interaction by Lattice QCD

6 independent forces in flavor SU(3) symmetry

J-PARC E40 (Miwa et al.) Σp Scattering Experiment

- 1.3 GeV/c π⁺⁻ p -> K⁺ Σ⁺⁻ reaction
- Σ⁺⁻ track not directly measured
- Measure proton momentum vector
 -> kinematically complete

Under preparation. Run from 2018 Feb.

$$d\sigma/d\Omega$$
 for Σ^+ p, Σ^- p, Σ^- p-> Λ n
($p_{\Sigma} = 400-700$ MeV/c)
=> Phase shift from $d\sigma/d\Omega$ (90°)

=> Confirm quark Paul effect

Future: ∧p scattering Asymmetry -> LS force

<u>How to study density dependence</u> of ΛN interaction in matter (ΛNN force) ?

Ab-initio calc. of nuclear binding energies => NNN repulsion necessary Similar YNN (YYN, YYY) repulsive forces?

BE accuracy < 0.1 MeV => Density dependence of ΛN int.

High-Intensity High-Resolution line (HIHR)

High-Intensity High-Resolution line (HIHR)

Another approach using γ-rays

 p_{Λ} - s_{Λ} spacing is affected by density dep. of Λ N interaction It can be precisely (~keV) measured with E1 γ -transitions.

E1 (p_{\Lambda}->s_{\Lambda}) measurement for a wide A range

$$^{29}{}_{\Lambda}$$
Si, $^{52}{}_{\Lambda}$ Cr, $^{89}{}_{\Lambda}$ Y, $^{135}{}_{\Lambda}$ La, $^{208}{}_{\Lambda}$ Pb

(K⁻,π⁻) 1.1 GeV/c @K1.1 line >100 kW, Total ~ 7 weeks

Density dependence of AN interaction

=> Solve hyperon puzzle

Origin of nuclear LS splitting

- 2-body LS force
 - --- Very small due to cancellation between large symmetric LS and large antisymmetric LS forces
- Tensor force

----No one pion exchange -> small, no isospin dependence.

• Many-body correlation

----No one pion exchange ->Small ?

Heavy hypernuclei

(MeV)

3. Future prospect 3.2 Modification of baryons in nuclear matter

<u>"Modifications" of baryons</u> <u>in nuclear matter</u>

- EMC effect (Change of structure function in DIS)
- Change of form factors ? "Swelling"?
- Change of magnetic moment ??

Why?

.......

- Structure change in nuclear medium?
- Effects of baryon mixing, meson exchange current,...
- Partial restoration of chiral symmetry??

Hyperons are free from Pauli blocking – suitable probe

Λ's magnetic moment in a hypernucleus Λ's beta-decay rate ($g_Δ$) in a hypernucleus

E63: Measure μ_{Λ} in a nucleus for the first time

Measurement of μ_{Λ} in a hypernucleus is extremely difficult =>J-PARC-HI Λ -spin-flip M1 transition: B(M1) -> g_{Λ}

$$B(M1) = (2J_{up} + 1)^{-1} |\langle \Psi_{low} \| \mu \| \Psi_{up} \rangle|^{2}$$

$$= (2J_{up} + 1)^{-1} |\langle \psi_{\Lambda\downarrow} \psi_{c} \| \mu \| \psi_{\Lambda\uparrow} \psi_{c} \rangle|^{2}$$

$$\mu = g_{c}J_{c} + g_{\Lambda}J_{\Lambda} = g_{c}J + (g_{\Lambda} - g_{c}),$$

$$= \frac{3}{8\pi} \frac{2J_{low} + 1}{2J_{c} + 1} (g_{\Lambda} - g_{c})^{2} [\mu_{N}^{2}]$$

$$: assuming "weak coupling"$$

between a Λ and the core.

R.H. Dalitz and A. Gal, Annals of Phys. 116 (1978) 167.

⁷_ALi ~100% Doppler Shift Attenuation Method: eg) B(E2): Tanida et al. $\Gamma = BR / \tau = \frac{16\pi}{9} E_{\gamma}^3 B(M1)$ PRL 86 (2001) 1982

 g_{Λ} may be modified in a nucleus ~+2--5 % for ${}^{4}_{\Lambda}$ He due to $\Lambda-\Sigma$ mixing ? (Dover-Gal) -7% for ${}^{7}_{\Lambda}$ Li K exchange current ? (Oka et al.) Possible effects of structure change??

For 35 days for 50kW Assuming 56k K⁻/spill for 0.9 GeV/c 176k K⁻/spill for 1.1 GeV/c Stat. error $\Delta \tau / \tau = 6\% = > \frac{\Delta |g_{\Lambda} - g_{c}|}{|g_{\Lambda} - g_{c}|} \sim 3\%$

Experimental Plans at K1.1 (personal)

- E63: γ -ray spectroscopy of ${}^{4}{}_{\Lambda}$ H (CSB), ${}^{7}{}_{\Lambda}$ Li (g_{Λ}) via (K⁻, π ⁻) HT
- Establish (π^{-} ,K⁰) reaction method w/SKS *A. Feliciello, E. Botta*
 - Lifetime of ${}^3_\Lambda H,\, {}^4_\Lambda H$ via ($\pi^{\text{-}},\!K^0\!)$
- Weak decay experiments
 - E22: ${}^{4}_{\Lambda}$ He, ${}^{5}_{\Lambda}$ He NMWD via (π^{+} ,K⁺) Sakaguchi / Ajimura

 ${}^{4}_{\Lambda}$ H NMWD via (π^{-} ,K⁰) => Test $\Delta I = 1/2$ rule

- E18: ${}^{12}_{\Lambda}C \Lambda NN \rightarrow NNN via (\pi^+, K^+) Bhang / Outa$
- Beta decay rate: ${}^{5}_{\Lambda}$ He -> 4 He p e⁻ ν^{bar} , ... HT
- E1 γ -rays for ${}^{29}_{\Lambda}$ Si, ${}^{52}_{\Lambda}$ Cr, ${}^{89}_{\Lambda}$ Y, ${}^{135}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb via (K⁻, π ⁻) *HT*
- γ -rays for ${}^{12}{}_{\Lambda}B$, ${}^{16}{}_{\Lambda}N$ via (π -,K⁰) => CSB of p-shell hypernuclei *HT*
- Σ^{0} -> $\Lambda\gamma$ decay in nucleus (⁴_{Σ}He) via (K⁻, π^{-}) HT
- Λp scattering experiments Miwa

4. Hadron Hall Extension and Heavy Ion Acceleration at J-PARC

J-PARC HI: Closed-geometry detector

10

-30

-20

-10

No contamination from non-strange nuclei by the ⁶Li projectiles at 20 A GeV.

20

30

40

[cm]

Hypernuclear physics program at J-PARC HI

Neutron(proton)-rich hypernuclei, Multi-strange hypernuclei

- => BB/BBB interactions, $\Lambda N-\Sigma N / \Lambda \Lambda-\Xi N$ mixing
 - Ann, ${}^{5}_{\Lambda}$ H, ${}^{6}_{\Lambda}$ H, ${}^{9}_{\Lambda}$ He, ${}^{10}_{\Lambda}$ He, ${}^{11}_{\Lambda}$ Li, ${}^{12}_{\Lambda}$ Li; ${}^{3}_{\Lambda\Lambda}$ H, ${}^{4}_{\Lambda\Lambda}$ H, ${}^{5}_{\Lambda\Lambda}$ H, ... New Element?? Ξ = Σ =
 - Ξ -n, Ξ -nn, Ω -n, Ξ - Ξ -nn, ... "Weakly-decaying <u>negatively-charged nuclei</u>"
 - Other metastable objects (MEMO) ? Strangelet?
 - ⁵ _^Li, ⁶ _^Be, ⁸ _^B,...
- Magnetic moments, B(M1) by Coulomb excitation

=> Baryon properties in a nucleus = $\Lambda N \cdot \Sigma N$ mixing, Baryon structure change?

- Magnetic moment of ⁵, He, ⁷, He, …
- Λ -spin-flip B(M1) of ${}^{4}{}_{\Lambda}$ H/ ${}^{4}{}_{\Lambda}$ He... by Coulomb excitation
- Lifetimes, weak decay branching ratios => Baryonic weak interaction
 - ${}^{3}_{A}H, {}^{4}_{A}H, ({}^{4}_{A}He, {}^{5}_{A}He,), \dots, \Xi^{-}n \rightarrow \Sigma^{-}n$
- **Interaction cross section in matter** => Nuclear radius, Neutron halo
 - Size of ${}^3_{\Lambda}$ H, ${}^6_{\Lambda}$ H, ${}^7_{\Lambda}$ He...
- Gamma decays, B(E2) by Coulomb excitation => Impurity effect
 - ⁷_^He, ⁹_^Be, ¹³_^C,...

Negatively-charged nuclei

Generally, Ξ hypernuclei decay strongly via Ξ -p -> $\Lambda\Lambda$, giving no 2nd vertex. => Identification extremely difficult

 \equiv n (S=1, I=1) is predicted to be bound, deuteron analog in {10*}, BE= 3.6 MeV from ESC08a Kiso event and recent E05 pilot data suggest a rather deep \equiv -nulcear attractive potential

=> Weakly-decaying Ξ hypernuclei? Ξ^{-n} , $\Xi^{0}p$, Ξ^{-nn} (?),

 Ξ^{-} n -> $\Lambda \pi^{-}$ n (Ξ n (S=0, I=1) is predicted to be strongly repulsive)

Weakly-decaying negatively-charged nuclei can be easily

separated and identified. Ξ -n, Ξ -nn, (Σ -n), Ω -n, Ξ - Ξ -nn

d (K⁻,K⁺) [Ξ^- n] => Accurate binding energy HI => Lifetime and Decay mode (Ξ^- n-> Σ^- n: suppressed?).

σ ~1 μb (central)
 (Sano, Wakai)
 Probably, no problem in the yield

5. Summary

Recent results in hypernuclear physics at J-PARC

- Large CSB effect in A=4 Λ hypernuclei confirmed from precise ⁴_ΛHe(1⁺->0⁺) γ-ray measurement
- E-nucleus bound systems observed in emulsion ($\Xi^{-14}N$) and in ${}^{12}C(K-,K+)$ ${}^{12}_{\Xi}Be$ spectrum.

Future

Solve hyperon puzzle

- ΣN , ΛN scattering experiments (E40 and beyond)
- Nuclear density dependence of ΛN interaction
 Precise B_Λ via high resolution (π⁺,K⁺)/(e,e'K⁺) / E1 γ-ray spectroscopy

Modification of baryons in nuclear matter

 g_{Λ} in hypernucleus to see baryon modification in a nucleus (E63)

J-PARC upgrades

Hadron Hall extension (K1.1 and HIHR lines) and HI acceleration strongly desired.