

CONTENTS

• prologue

<Experiments before the disaster> experimental apparatus FOREST data

- an attempt to measure the Δ radius
- present status of $\pi\pi$ BEC experiments
- measurements of BEC parameters event mixing methods obtained BEC parameters
- 4-D source distribution
- more on the Δ size
- epilogue

BGOegg experiments

Experiments before 3.11

Experimental apparatus at ELPH

4π EM calorimeter FOREST

Solid/Liquid Hydrogen Target

Standard FOREST data obtained before 3.11

BG: 2 neutrals, S3: 0 or 1 particle, Raf: 0, Missing mass: nucleon Data obtained in a 3 week run with a H2 target

Single meson photoproduction

γ Energy (MeV)

γEnergy (MeV)

FOREST works well!

FOREST data with a D₂ target

Preliminary:

• Outgoing *p*'s or *n*'s were detected with FOREST.

• neutron data $\gamma d \rightarrow \eta n p_{sp}$

ELPH

T. Ishikawa

• proton data $\gamma d \rightarrow \eta p n_{sp}$

Search for hidden-strange pentaquark baryons

FOREST data in *K***⁰Λ channel** ELPH Y. Tsuchikawa

W (MeV)

Background reduction

Determination of the ωN scattering length

An attempt to measure the size of $\Delta(1232)$ with FOREST data

How to measure the size of particles

• Electron scattering

electron-proton elastic scattering

$$\left. r_{p}^{2} \right\rangle = -6 \left. \frac{dG_{E}}{dQ^{2}} \right|_{Q^{2}=0}$$

Orsay, Stanford, Saskatoon, Mainz

$$G_E = 1 - \frac{1}{6}Q^2 r_p^2 + \frac{1}{120}Q^4 r_p^4 + \cdots$$
 (model indep. expansion)

• Hydrogen spectroscopy

$$E(nS) \approx -\frac{R_{\infty}}{n^2} + \frac{L_{1S}}{n^3}, \qquad L_{1S} \approx (8172 + 1.56r_p^2)MHz$$

 $r_p^e = 0.8775(51)fm$

Muonic hydrogen
 2S-2P Lamb Shift

 $r_p^{\mu} = 0.8773(31) fm$ $r_p^{\mu} = 0.84087(39) fm$

Hadron scattering

 $\sigma_{pp} \approx 40 \ mb \approx 2\pi a^2$ at high energies up to $\sqrt{s} \approx 50 \ \text{GeV}$ $\implies a \approx 0.8 \ fm$

Data analysis with kinematical fit

best combinations of two pairs of photons

missing mass spectrum assumed $\gamma p \rightarrow \pi^0 \pi^0 p$

Total cross section

22

ELPH

Q. He

Dominant processes at 1 GeV 2nd resonance region Saclay model $P_{11}(1440) \rightarrow p(\pi^0 \pi^0)_S^{I=0}$ o Valencia model $D_{13}(1520) \rightarrow \Delta \pi^0 \rightarrow p \pi^0 \pi^0$ dominant process + $P_{11}(1440) \rightarrow p(\pi^0 \pi^0)_S^{I=0}$ 3rd resonance region o Mainz model $F_{15}(1680) \rightarrow \Delta \pi^0 \rightarrow p \pi^0 \pi^0$

 $2\pi^0$ photoproduction at ~1 GeV is dominated by $\Delta\pi$

FOREST data

$\pi^0 p$ invariant mass

$\pi\pi BEC$ experiments

Present status

$\pi\pi$ Bose-Einstein correlation experiments

in elementary processes

System	Reaction	$E_{cm}(GeV)$	$r_0(fm)$	λ_2	
$\pi^{\pm}\pi^{\pm}$	$e^+e^- \rightarrow h$ [184]	29	0.75 ± 0.05^{a}	0.28 ± 0.04^{a}	
			0.97 ± 0.11^{b}	0.27 ± 0.04^{b}	
$\pi^{\pm}\pi^{\pm}$	$e^+e^- \rightarrow h$ [185]	29	0.65 ± 0.06^{b}	0.50 ± 0.04^{b}	
$\pi^{\pm}\pi^{\pm}$	$e^+e^- \rightarrow h$ [186]	34	0.82 ± 0.07^a	0.35 ± 0.03^{a}	PEC parameter range
$\pi^{\pm}\pi^{\pm}$	$e^+e^- \rightarrow h$ [187]	58	0.73 ± 0.21^{a}	0.47 ± 0.07^{a}	DEC parameter ranges
			0.58 ± 0.06^{b}	0.39 ± 0.05^{b}	0.3 - r - 1.2(fm)
$\pi^{\pm}\pi^{\pm}$	$e^+e^- \rightarrow h$ [188]	91	0.82 ± 0.04^{a}	0.48 ± 0.03^{a}	$0.5 \le I_0 \le 1.2(Jm)$
			0.52 ± 0.02^{b}	0.30 ± 0.01^{b}	
$\pi^{\pm}\pi^{\pm}$	$e^+e^- \rightarrow h$ [189]	91	0.83 ± 0.03^a	0.31 ± 0.02^{a}	
			0.47 ± 0.03^{b}	0.24 ± 0.02^{b}	Different results from
$\pi^{\pm}\pi^{\pm}$	$e^+e^- \rightarrow h$ [190]	91	0.46 ± 0.02^{b}	0.29 ± 0.03^{b}	the same experiment
$\pi^{\pm}\pi^{\pm}$	$e^+e^- \rightarrow h$ [183]	91	0.96 ± 0.02^{a}	0.67 ± 0.03^{a}	the same experiment
			0.79 ± 0.02^{b}	0.58 ± 0.01^{b}	
$\pi^{\pm}\pi^{\pm}$	$\gamma\gamma \rightarrow h$ [184]	5	1.05 ± 0.08	1.20 ± 0.13	
$\pi^{\pm}\pi^{\pm}$	$\gamma\gamma \rightarrow 6\pi^{\pm}$ [193]	1.6-7.5	0.54 ± 0.22	0.59 ± 0.20	Two $\pi^0\pi^0$ BEC
$\pi^{\pm}\pi^{\pm}$	$v(\bar{v})N \rightarrow h$ [194]	8-64	0.64 ± 0.16	0.46 ± 0.16	ownowimonts at IED
$\pi^{\pm}\pi^{\pm}$	$\mu p \rightarrow h$ [195]	23	0.65 ± 0.03	0.80 ± 0.07	experiments at LEP
$\pi^{\pm}\pi^{\pm}$	$\pi^+ p \rightarrow h$ [196]	21.7	0.83 ± 0.06	0.33 ± 0.02	$(I_2 \text{ OPAL})$
$\pi^{\pm}\pi^{\pm}$	$pp \rightarrow h$ [197]	26	1.02 ± 0.20	0.32 ± 0.08	$(L_3, OTTL)$
$\pi^{\pm}\pi^{\pm}$	$pp \rightarrow h$ [198]	27.4	1.20 ± 0.03	0.44 ± 0.01	
$\pi^{\pm}\pi^{\pm}$	$pp \rightarrow h$ [199]	63	0.82 ± 0.05	0.40 ± 0.03	
$\pi^{\pm}\pi^{\pm}$	$\bar{p}p \rightarrow h$ [200]	1.88	1.04 ± 0.01	1.96 ± 0.03	$a \cdot \pi^+ \pi^-$
$\pi^{\pm}\pi^{\pm}$	$\bar{p}p \rightarrow h$ [201]	200-900	0.73 ± 0.03	0.25 ± 0.02	
$\pi^{\pm}\pi^{\pm}$	$ep \rightarrow eh$ [202]	$2.45 < Q_{\gamma} < 10$	0.68 ± 0.06	0.52 ± 0.20	b: MC or EM
$\pi^{\pm}\pi^{\pm}$	$ep \rightarrow eh$ [203]	$10.5 < Q_{\gamma}$	0.67 ± 0.04	0.43 ± 0.09	
$\pi^0\pi^0$	$e^+e^- \to h$ [190, 191]	91	0.31 ± 0.10^{b}	0.16 ± 0.09^{b}	
$\pi^0\pi^0$	$e^+e^- \rightarrow h$ [192]	91	0.59 ± 0.11^{b}	0.55 ± 0.15^{b}	
$k^{\pm}k^{\pm}$	$ep \rightarrow eh$ [204]	$E_e: 27.5; E_p: 820$	$0.37 \pm 0.07 \substack{+0.09 \\ -0.08}$	$0.57 \pm 0.09 ^{+0.15}_{-0.08}$	
$k_{S}^{0}k_{S}^{0}$	$ep \rightarrow eh$ [204]	$E_e: 27.5; E_p: 820$	$0.70 \pm 0.19 \substack{+0.28 \\ -0.08 - 0.52} \pm 0.38$	$0.63 \pm 0.09 +0.07 + 0.07 + 0.07 + 0.08 -$	0.09

$\pi\pi$ Bose-Einstein correlation experiments

in heavy ion collisions

BE System	Projectile	Target	E(GeV/nucleon)	$R_{rms}(fm)$	Ref.	-2	
$\pi^{\pm}\pi^{\pm}$	р	Н	200	1.66 ± 0.04	[206]		-
$\pi^{\pm}\pi^{\pm}$	p	Xe	200	1.53 ± 0.13	[206]		8
$\pi^{\pm}\pi^{\pm}$	р	Xe	200	1.45 ± 0.11	[206]*		-
$\pi^{\pm}\pi^{\pm}$	d	Ta	3.4	2.20 ± 0.50	[207]		
$\pi^{\pm}\pi^{\pm}$	He	Ta	3.4	2.90 ± 0.40	[207]		
$\pi^-\pi^-$	С	С	4.2	2.75 ± 0.73	[208]	Ε	
$\pi^-\pi^-$	С	C	4.2	3.76 ± 0.88	[208]*	f,	
$\pi^{\pm}\pi^{\pm}$	С	Ta	3.4	3.40 ± 0.30	[207]	, E	
$\pi^+\pi^+$	Ar	KC1	1.8	4.10 ± 0.4	[211]	Ē	
$\pi^-\pi^-$	Ar	KC1	1.8	$2.77^{+0.6}_{-0.9}$	[211]		
$\pi^-\pi^-$	Ne	NaF	1.8	2.80 ± 0.30	[211]		
$\pi^-\pi^-$	Ar	KC1	1.5	4.91 ± 0.50	[213]		
$\pi^-\pi^-$	Ar	KC1	1.2	3.8 ± 0.50	[210]*		
$\pi^-\pi^-$	Ar	BaI_2	1.8	3.05 ± 1.10	[209]		0^{-1} 1 2 3 4 5
$\pi^-\pi^-$	Ar	Pb_3O_4	1.8	3.30 ± 0.93	[209]		. 1/3
$\pi^{-}\pi^{-}$	Ar	Pb_3O_4	1.8	3.98 ± 0.78	[209]*		A ^{llo}
$\pi^-\pi^-$	Ar	KC1	1.8	2.3 ± 0.6	[205]		
$\pi^-\pi^-$	Fe	Fe	1.7	2.5 ± 0.6	[205]		$R = 1.2 A^{1/3} fm$
$\pi^{\pm}\pi^{\pm}$	Kr	RbBr	1.2	6.61 ± 1.47	[212]		rms 1.211 Jui
$\pi^-\pi^-$	Nb	Nb	1.5	4.8 ± 0.1	[205]		
$\pi^-\pi^-$	Ar	Pb	1.8	5.53 ± 0.38	[214]		
at hig	gh en	ergi	es and n				

- 1) No $\pi\pi$ BEC experiment at low energies (baryon resonance region)
- 2) No $\pi^0 \pi^0$ BEC data obtained in heavy ion collisions
- 3) All $\pi\pi$ BEC effects in high multiplicity experiments

 $\pi\pi$ BEC in low energies

How to get the reference for low-multiplicity data

Event mixing method for a reference distribution

Appropriate kinematical requirements should be made in the mixing procedure.

An event mixing method was developed for $\gamma p \rightarrow 2\pi^0 p$ and then extended to $\gamma p \rightarrow 2\pi^0 X$ and $\gamma d \rightarrow 2\pi^0 X$.

Requirements on missing mass

Kinematical requirements

o missing mass

The mass of the third particle in a mixed event should be the same as the original one.

o pion energy

The energy of pions should have an upper limit.

o photon clusters

There should be no overlapping photon clusters. (an acceptance issue)

simulation Treatments for cluster overlapping

overlaping clusters

w/o clusters overlapped

Requirements on pion energies

C2(Q) depending on the upper limit of $E\pi$ with missing mass requirements full filled

Optimization for upper limits of E\pi

Test of the method w MC simulation

BEC events are produced by weighting the phase space events with the correlation function:

$$C_2(Q) = N(1 + \lambda_2 e^{-r_0^2 Q^2})$$

λ_2 and r_0

for Monte Carlo samples of $\gamma p \rightarrow \pi^0 \pi^0 X$

Event Sample	$E_{\gamma}~({ m GeV})$	$r_0~({\rm fm})$	λ_2
noBE	1.1		<u> </u>
BE,1	1.1	0.4	1.0
BE,2	1.1	0.7	1.0
BE,3	1.1	1.0	1.0
BE,4	1.1	1.3	1.0
BE,5	1.1	0.4	0.5
BE,6	1.1	0.7	0.5
BE,7	1.1	1.0	0.5
BE,8	1.1	1.3	0.5

FOREST data

Results of C2 Q distribution

 $\gamma p \rightarrow \pi^0 \pi^0 X$

 $\gamma d \rightarrow \pi^0 \pi^0 X$

FOREST data

Obtained BEC parameters

 $\lambda_2 = 0.57 \pm 0.01$

 $\pi\pi$ BEC in low energies

RMS radius of Δ with 4D distribution

Where is the original point of a generated π^{0} ?

 $\gamma N \rightarrow \pi^0 \Delta$ process 4-D Gaussian distribution

$$\rho(x) = N \exp\left(\frac{-(x^2 - x_0^2)}{2\alpha^2}\right)$$

case I) $1^{\text{st}} \pi^0$ appears at the same place of Δ $C_{BEC}(Q) = 1 + \lambda f(Q) = 1 + \lambda e^{-\frac{\alpha^2 Q^2}{2}}$ $R^2 = \langle x^2 \rangle_3 = \int x^2 \rho_3(x) d^3x$

$2\pi^{o}$ in space-time coordinates of Δ at rest

Expectation:

Space components of $(x - y)^2$ give information on the size in the Δ rest frame.

Space-like intervals between $2\pi^{\circ}$ at the original space-time points subject to the 4D Gaussian distribution parametrized by α and λ

$$C_{BEC}(Q) = 1 + \lambda |f(Q)|^2 = 1 + \lambda e^{-\alpha^2 Q^2}$$

RMS radius R of Δ

<correlation function>

$$C_{BEC}(Q) = 1 + \lambda |f(Q)|^2 = 1 + \lambda e^{-\alpha^2 Q^2}$$

<Gaussian form factor in Euclidean coordinates>

$$\rho_E(x) = \frac{1}{(\sqrt{2\pi}\alpha)^4} \exp\left(-\frac{x_E^2}{2\alpha^2}\right)$$

<mean square space-time interval>

$$\langle (x_E - y_E)^2 \rangle = \int (x_E - y_E)^2 \rho_E(x) \rho_E(y) d^4x d^4y = 8\alpha^2$$

 $<\Delta$ mean square radius R>

$$2R^2 = \int (\boldsymbol{x} - \boldsymbol{y})^2 \rho_3(\boldsymbol{x}) \rho_3(\boldsymbol{y}) d^3 x d^3 y$$

<mean square decay time>

$$au = \langle x_0 \rangle = \frac{1}{\Gamma} = \frac{1}{117 \mathrm{MeV}} = 1.68 \mathrm{fm}$$

$$\langle (x_0 - y_0)^2 \rangle_t = \frac{1}{\tau} \int t^2 e^{-\frac{t}{\tau}} dt = 2\tau^2$$

<assumption>

$$\langle (x_E - y_E)^2 \rangle = \langle (\boldsymbol{x} - \boldsymbol{y})^2 \rangle_3 + \langle (x_0 - y_0)^2 \rangle_t$$
$$R^2 = 4\alpha^2 - \tau^2 = 1.2 \text{ fm}^2 \qquad \text{if } \alpha^2 \sim 1 \text{ fm}^2$$

Summary up to here

- π⁰π⁰ Bose-Einstein correlations were observed for the first time in the baryon resonance region.
- One dimensional BEC parameters were preliminary obtained: $r_0 = (1.02 \pm 0.01) fm$

 $\lambda_2 = 0.57 \pm 0.01$ by fitting a 2 particle correlation function $C_2(p_1, p_2) = \frac{P_2(p_1, p_2)}{P_0(p_1, p_2)} = 1 + \lambda_2 e^{-Q^2 r_0^2}$

to the FOREST $2\pi^0$ photoproduction data.

- More work is necessary to improve the event-mixing method.
- Assuming $r_0 = 1$ fm, we find 1.1 fm for the RMS radius of Δ .
- Some other applications of BEC are conceivable to get space-time information on ∆∆ production.
- More detailed study on BEC will be made in BGOegg experiments.

 $\pi\pi$ BEC in low energies

Return back to 3D distribution

Where does π^0 originate from?

size of hadrons = the range of existence of quarks
 comprised of quarks

Originating places of pions

Considerations of the Δ **size**

space-time points of $1^{\rm st}$ π and Δ showing up

• simultaneous production (time)

1st π and Δ are produced at the same time in the $\gamma N \rightarrow \pi \Delta$ reaction.

• wave functions overlapped (place) \land the center of 1st π appears somewhere within the Δ .

space-time coordinates of $\pi\pi$ in the Δ rest frame

• the center of Δ : the origin of coordinates, O

1st π : A(0,**x**)

- 2nd π : B(τ , y) τ : proper time
- the MS radius of Δ : *R*

$$\langle (\boldsymbol{x} - \boldsymbol{y})^2 \rangle = 2R^2$$

2nd

 $\frac{1 \text{st}}{\pi^0}$

 π^{0}

3D treatments in the Δ rest frame

• 3D source density distribution

$$\rho(\boldsymbol{x}) = \frac{1}{(\sqrt{2\pi}\alpha)^3} \exp\left(\frac{-\boldsymbol{x}^2}{2\alpha^2}\right)$$

• BEC function

$$C_{BEC}(q) = 1 + \lambda f(q) = 1 + \lambda \exp\left(-\alpha^2 q^2\right)$$
$$q^2 = q^2 = (p_1 - p_2)^2$$

• MS radius of Δ

$$\langle \boldsymbol{x}^2 \rangle = \frac{1}{(\sqrt{2\pi}\alpha)^3} \int \boldsymbol{x}^2 \exp\left(\frac{-\boldsymbol{x}^2}{2\alpha^2}\right) d^3 \boldsymbol{x} = 3\alpha^2$$

Experiments after

new 4π EM calorimeter BGOegg

Construction of BGOegg

- egg-shape assembly of 1320 BGO crystals
- polar angles $24^{\circ} \le \theta \le 144^{\circ}$ (86% of 4π sr)
- good segmentation of ~6°
 sufficient thickness
 of 220 mm (20X₀)
 - self-supporting structure to hold the whole crystals of about 2t in weight w/o insensitive area
 - world highest energy-resolution of 1.3% for 1 GeV photons

cross sectional view

not the maximum instantaneous value but obtainable everywhere in BGOegg

on the way of mounting 1320 BGO crystals

110

dummy PMTs (chemical wood)

BGOegg under construction

assembly task

Transportation of BGOegg from Sendai to SPring-8 by truck 55

BGOegg @ SPring-8

good luck amulet for schoolwork of kids

EPS

2013

56

all PMT's installed

good luck amulet for safe traveling

Layout of BGOegg experiments at LEPS2

Charged particle detection

with Inner Plastic Scintillator (IPS) and Cylindrical Drift Chamber (CDC) inside BGOegg

specifications

IPS: 30 plastic scintillator 453 mm x 26 mm x 5 mm Multi Pixel Photon Counter(MPPC) are placed only on one edge

CDC: 72 stereo wires, 4 layers inner diameter = 116 mm outer diameter = 196 mm chamber length = 550 mm thickness = 40 mm

Energy calibration of BGOegg most important job!

- → Huge amounts of $\pi^0 \rightarrow \gamma \gamma$ events were used.
- > Calibration was made so as to get π^0 mass just on the right place.
- > Iterations are necessary to reach the final calibration result.
- > All the $\gamma\gamma$ events are assumed to be generated at the center of the target.

Calibration results (2y invariant mass)

Summary for BGOegg experiments

- **BGOegg experiments have been conducted at SPring-8/LEPS2.**
- Goals of BGOegg experiments:

to measure the spectral function of η' via $\eta' \rightarrow \gamma \gamma$

in the nuclear medium

to search for an η' mesic nucleus

- > Data are accumulated for 2 years. (Liq.H₂ and \dot{C})
- Precise energy calibration was made for BGOegg.
 obtained γγ mass resolutions so far:
 σ(π⁰) ≈ 5.8MeV, σ(η) ≈ 13MeV, σ(η') ≈ 19MeV (20mm^t C)
 intrinsic energy resolution of BGOegg: σ(γ)/E_γ ≈ 1.3%@1GeV
- > Ready for analyzing data for physics.

including Δ radius measurements

~6 months

(effective data taking time)