Excited States of the Nucleon and New Resonance Structures from Two-Pion Electroproduction Data

Hadron Physics and QCD

- High-energy physics has evolved to search for physics beyond the standard model
 - But the standard model is still evolving!
- A goal of hadron physics is to study the strong force in the standard model, QCD.
 - Solving QCD at non-perturbative energies is a difficult problem.
 - To test our understanding, we need improved theoretical calculations <u>and</u> better data.

Spectroscopy: positronium

Spectrum of cc mesons

Group Theory: Flavor SU(3)

OCTET

DECUPLET

Quark Model: baryons (qqq)

N	syn	L^P	S		N(I =	1/2)			$\Delta(I =$	= 3/2)	
2	A	1+	1/2	$1/2^{+}$	$3/2^{+}$						
2	Μ	2^{+}	3/2	$1/2^{+}$	$3/2^{+}$	$5/2^{+}$	$7/2^{+}$				
2	Μ	2^+	1/2		$3/2^{+}$	$5/2^{+}$			$3/2^{+}$	$5/2^{+}$	
2	М	0^+	3/2		$3/2^{+}$						
2	М	0^+	1/2	$1/2^{+}$				$1/2^{+}$			
				P ₁₁ (1710)				P ₃₁ (1750)			
2	\mathbf{S}	2^+	3/2					$1/2^{+}$	$3/2^{+}$	$5/2^{+}$	$7/2^{+}$
								P ₃₁ (1910)	P ₃₃ (1920)	F ₃₅ (1905)	$F_{37}(1950)$
2	\mathbf{S}	2^+	1/2		$3/2^{+}$	$5/2^{+}$					
					P ₁₃ (1720)	F ₁₅ (1680)					
2	\mathbf{S}	0^+	3/2						$3/2^{+}$		
									P ₃₃ (1600)		
2	\mathbf{S}	0^+	1/2	$1/2^{+}$							
				P ₁₁ (1440)							
1	Μ	1^{-}	3/2	$1/2^{-}$	$3/2^{-}$	$5/2^{-}$					
				$S_{11}(1650)$	$D_{13}(1700)$	$D_{15}(1675)$					
1	Μ	1^{-}	1/2	$1/2^{-}$	$3/2^{-}$			$1/2^{-}$	$3/2^{-}$		
				$S_{11}(1535)$	$D_{13}(1520)$			$S_{31}(1620)$	D ₃₃ (1700)		
0	s	0^+	3/2						$3/2^{+}$		
									P ₃₃ (1232)		
0	\mathbf{S}	0^+	1/2	$1/2^{+}$							
				$P_{11}(938)$							

PDG: Known Octet States

J^P	$(D, L_N^P)S$	Octet	members		Singlets
$1/2^{+}$	$(56,0^+_0) \ 1/2N(939) \ \Lambda$	(1116)	$\Sigma(1193)$	Ξ(1318)	
$1/2^{+}$	$(56,0^+_2) \ 1/2N(1440)\Lambda$	(1600)	$\Sigma(1660)$	$\Xi(1690)^{\dagger}$	
$1/2^{-}$	$(70,1^{-}_{1}) \ 1/2N(1535)\Lambda$	(1670)	$\Sigma(1620)$	Ξ(?)	$\Lambda(1405)$
			$\Sigma(1560)^{\dagger}$		
$3/2^{-}$	$(70,1^{-}_{1}) \ 1/2 N(1520) \Lambda$	(1690)	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1^{-}_{1}) \ 3/2N(1650)\Lambda$	(1800)	$\Sigma(1750)$	Ξ(?)	
			$\Sigma(1620)^{\dagger}$		
$3/2^{-}$	$(70,1^{-}_{1}) \ 3/2N(1700)\Lambda$	(?)	$\Sigma(1940)^{\dagger}$	Ξ(?)	
$5/2^{-}$	$(70,1^{-}_{1}) \ 3/2N(1675)\Lambda$	(1830)	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$	
$1/2^{+}$	$(70,0^+_2) \ 1/2N(1710)\Lambda$	(1810)	$\Sigma(1880)$	Ξ(?)	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^+_2) \ 1/2N(1720)\Lambda$	(1890)	$\Sigma(?)$	Ξ(?)	
$5/2^{+}$	$(56,2^+_2) \ 1/2N(1680)\Lambda$	(1820)	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	$(70,3^3) \ 1/2N(2190)\Lambda$	(?)	$\Sigma(?)$	Ξ(?)	$\Lambda(2100)$
$9/2^{-}$	$(70,3^3) \ 3/2N(2250)\Lambda$	(?)	$\Sigma(?)$	Ξ(?)	
$9/2^{+}$	$(56,4^+_4) \ 1/2N(2220)\Lambda$	(2350)	$\Sigma(?)$	Ξ(?)	

Compare: Exp. to Quark Model

What have we learned?

- The quark model works well for the ground states with L=0.
- When L>0, the predictions of the quark model seem to break down.
- This may be because the energy required to excite a quark into higher orbitals is greater than the pion mass.
 - Is it more efficient to create pions than baryon resonances?

Some Theoretical Tools

- Lattice QCD: direct calculations of QCD using the concept of Feyman path integrals.
 - With advances in computers, these calculations are finally possible to predict hadron resonances
 - One difference from the quark model is that gluon excitations can also form "hybrid" resonances.
- QCD sum rules: fundamental calculations, using the operator product expansion.
 - Oka-san is the expert in this area.

Lattice Gauge Theory

Lattice: heavy meson spectrum

Lattice Predictions: N* and Δ^*

Missing Baryon States (2010)

Empty/Yellow boxes are missing/uncertain baryon states.

Missing Baryon States (2012)

Empty/Yellow boxes are missing/uncertain baryon states.

Do the new states fit into LQCD ?

Ignoring the mass scale, new candidate states fit with the J^P values predicted from LQCD.

Slide borrowed from V. Burkert.

Excited Baryons in the history of the Universe

Excited baryons are at the transition between the quark-gluon liquid, described in **hot QCD**, and the confinement of quarks and gluons in nucleons, described in **strong QCD**. This period lasted ~ 10⁻⁶ seconds.

Do we understand this transition?

Slide borrowed from S. Mukherjee.

The experimental program on the studies of N* structure in exclusive meson photo-/electroproduction with CLAS seeks to determine:

- $\gamma_v NN^*$ electrocouplings at photon virtualities up to 5.0 GeV² for most of the excited proton states from meson electroproduction.
- extend knowledge on the N*-spectrum and from the data for photo- and electroproduction reactions.

This provides a unique source of information on non-perturbative QCD that generates excited nucleon states (N*'s).

Excited Nucleon States and Insight to Strong QCD Dynamics

Extraction of γ_vNN* Electrocouplings from the Exclusive Meson Electroproduction off Nucleons

 Consistent results on γ_vNN* electrocouplings from different meson electroproduction channels and different analysis approaches demonstrate the reliable extraction of these quantities.

Summary of the Published CLAS Data on Exclusive Meson Electroproduction off Protons in N* Excitation Region

Hadronic final state	Covered W-range, GeV	Covered Q ² - range, GeV ²	Measured observables	 dσ/dΩ–CM angular distributions 	
π ⁺ n	1.1-1.38 1.1-1.55 1.1-1.7 1.6-2.0	0.16-0.36 dơ/ 0.3-0.6 dơ/ 1.7-4.5 dơ/ 1.8-4.5 dơ/	dσ/dΩ dσ/dΩ dσ/dΩ, A _b dσ/dΩ	• A _b ,A _t ,A _{bt} -longitudinal beam, target, and beam-target asym- metries	
π ⁰ p	1.1-1.38 1.1-1.68 1.1-1.39	0.16-0.36 0.4-1.8 3.0-6.0	$\begin{array}{c} {\rm d}\sigma / {\rm d}\Omega \\ {\rm d}\sigma / {\rm d}\Omega, {\rm A}_{\rm b}, {\rm A}_{\rm t}, {\rm A}_{\rm bt} \\ {\rm d}\sigma / {\rm d}\Omega \end{array}$	 P⁰, P' –recoil and transferred polarization of strange baryon 	
ηρ	1.5-2.3	0.2-3.1	dσ/dΩ		
K ⁺ Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P ⁰ , P'	Almost full coverage of the final hadron	
$K^+\Sigma^0$	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P'	nase space in πN, π ⁺ π ⁻ p, ηp, KY electroproduction	
π * π ⁻ p	1.3-1.6 1.4-2.1	0.2-0.6 0.5-1.5	Nine 1-fold differential cross sections		

Approaches for Extraction of $\gamma_v NN^*$ Electrocouplings from the CLAS Exclusive Meson Electroproduction Data

- Analyses of different pion electroproduction channels independently:
- π⁺n and π⁰p channels:

Unitary Isobar Model (UIM) and Fixed-t Dispersion Relations (DR)

I.G. Aznauryan, Phys. Rev. C67, 015209 (2003).

I.G. Aznauryan et al., CLAS Coll., Phys Rev. C80, 055203 (2009).

I.G. Aznauryan et al., CLAS Coll., Phys. Rev. C91, 045203 (2015).

γp channel:

Extension of UIM and DR

I.G. Aznauryan, Phys. Rev. C68, 065204 (2003).

Data fit at W<1.6 GeV, assuming N(1535)1/2⁻ dominance

H. Denizli et al., CLAS Coll., Phys. Rev. C76, 015204 (2007).

π⁺π⁻p channel:

Data driven JLAB-MSU meson-baryon model (JM)

V.I. Mokeev, V.D. Burkert et al., Phys. Rev. C80, 045212 (2009).

V.I. Mokeev et al., CLAS Coll., Phys. Rev. C86, 035203 (2012).

V.I. Mokeev, V.D. Burkert et al., Phys. Rev. C93, 054016 (2016).

Global coupled-channel analyses of the CLAS/world data of $\gamma_{r,v}N$, πN , ηN , $\pi\pi N$, $K\Lambda$, $K\Sigma$ exclusive channels:

T.-S. H. Lee , AIP Conf. Proc. 1560, 413 (2013).

H. Kamano et al., Phys. Rev. C88, 035209 (2013).

Fits to $\gamma p \rightarrow \pi^+ n$ Differential Cross Sections and Structure Functions

The CLAS Data on $\pi^+\pi^-p$ Differential Cross Sections and their Fit within the Framework of Meson-Baryon Reaction Model JM

Summary of the Results on $\gamma_v pN^*$ Electrocouplings from CLAS

Exclusive meson electroproduction channels	Excited proton states	Q ² -ranges for extracted γ _v NN* electrocouplings, GeV ²
π ⁰ p, π ⁺ n	∆(1232)3/2⁺	0.16-6.0
	N(1440)1/2 ⁺ ,N(1520)3/2 ⁻ , N(1535)1/2 ⁻	0.30-4.16
π ⁺ n	N(1675)5/2 ⁻ , N(1680)5/2 ⁺ N(1710)1/2 ⁺	1.6-4.5
ηρ	N(1535)1/2 ⁻	0.2-2.9
π ⁺ π ⁻ p	N(1440)1/2 ⁺ , N(1520)3/2 ⁻	0.25-1.50
	∆(1620)1/2 ⁻ , N(1650)1/2 ⁻ , N(1680)5/2 ⁺ , ∆(1700)3/2 ⁻ , N(1720)3/2 ⁺ , N'(1720)3/2 ⁺	0.5-1.5

The values of resonance electrocouplings can be found in: https://userweb.jlab.org/~mokeev/resonance_electrocouplings/

The CLAS results on $\gamma_v pN^*$ electrocouplings for the excited states in mass range up to 1.8 GeV were interpolated/extrapolated in Q²-range up to 5.0 GeV².

Roper resonance in 2002 & 2016

V. Burkert, Baryons 2002

V. D. Burkert, Baryons 2016

Electrocouplings of ∆(1232)3/2⁺, N(1440)1/2⁺, N(1520)3/2⁻, N(1535)1/2⁻, N(1675)5/2⁻, N(1680)5/2⁺, N(1710)1/2⁺ were published in the recent edition of the PDG , Chin. Phys. C40, 100001 (2016).

Elucidating the Running Dressed Quark Mass

Data on $\Delta(1232)3/2^+$ electroexcitation from CLAS for the first time demonstrated that dressed quark mass is running with momentum.

Validating the Access to the Quark Mass Function

Good data description at Q²>2.0 GeV² achieved with <u>the same dressed quark mass</u> <u>function</u> for the ground and excited nucleon states of distinctively different structure.

One of the most important achievement in hadron physics of the last decade obtained in synergistic efforts between experimentalists and theorists.

Accessing Quark Mass Function from the $N\pi/\pi^+\pi^-p$ Electroproduction off Protons Data

Meson-Baryon Cloud and Quark Core in the N* Structure

The mechanisms of the meson-baryon dressing

First estimates for meson-baryon cloud amplitudes from the CLAS data on resonance electrocouplings and DSE/LF RQM evaluations for the quark core

 The structure of all studied resonances is determined by a complex interplay between inner core of dressed quarks and external meson-baryon cloud.

Peculiarities in the Structure of $\Delta(1620)1/2^{-1}$

- Only known resonance with dominant longitudinal electroexcitation at Q²>0.5 GeV².
- QM with three quarks only failed in describing the resonance electropcouplings

Hadron decays from the CLAS $\pi^{+}\pi^{-}p$ electroproduction data

Channel	Branching Fraction, %
$\pi\Delta$	27-64
ρ p	31-63

Large $\rho \textbf{p}$ decay in the sub-threshold region

Suggestive for a substantial contribution from ρp loops :

- either to the MB-cloud or as
- penta-quark admixture in the quark core

Evaluation of Δ (1620)1/2⁻ electrocouplings at Q²>2.0 GeV² (in progress).

Hypercentral CQM: E.Santopinto, M.Giannini, PRC 86, 065202 (2012).

Bethe-Salpeter CQM M.Ronninger, B.Ch.Metsch,EPJ, A49, 8 (2013).

New CLAS Results on $\pi^0 p$ electroproduction

Fully integrated cross sections Q² = 0.45 GeV μb = 0.55 GeV² $= 0.65 \, \text{GeV}^2$ = 0.75 GeV² Ω^2 $Q^2 = 0.85 \text{ GeV}^2$ $Q^2 = 0.95 \text{ GeV}^2$ 10 ٨ 1 ö Δ ò П. Δ 1.2 1.4 1.6 1.8 W, GeVstructure functions Rureliminar Fbe μb $W = 1.6125, O2 = 0.85 \text{ GeV}^2$ R_{TT} 0.5 -0.5 -0.5 0.5 0.5 0 cosθ cosθ

N. Markov, K.Joo, UCONN

1.10GeV<W<1.80 GeV, 0.3 GeV²<Q²<1.0 GeV²

Fit of the structure functions within the framework of UIM/DR (slide#6,7) will provide electrocouplings of the resonances in mass range up to 1.8 GeV with substantial decays to the N π final state.

👎 1.Data

2. JANR

 $\frac{0.5}{\cos\theta}$

 R_{TL}

-0.5

0

Sensitivity of the π^0 p Electroproduction off Protons Data to Electrocouplings of the Excited Nucleon States in the 3-rd Resonance Region

- Structure functions were evaluated within the UIM (see slide # 7)
- $\gamma_v pN^*$ electrocouplings and hadronic decay widths were taken from previous analyses of the CLAS N π and $\pi^+\pi^-p$ electroproduction off protons data.
- The data on unpolarised structure functions are compared with the UIM expectations accounting for all relevant resonances and when particular $\gamma_v pN^*$ amplitudes were switched off.

Preliminary Results – very high W

dσ/dΩ* =
$$\sigma_{T}$$
 + ε σ_{L}
+ ε σ_{TT} cos2 ϕ +
 $\sqrt{2}$ ε(ε+1) σ_{LT} cos ϕ

$$\sigma_L + \varepsilon \sigma_T = a$$

$$\sigma_{LT} = \frac{b}{\sin \theta \sqrt{2\varepsilon(\varepsilon + 1)}}$$

$$\sigma_{TT} = \frac{c}{\sin^2 \theta \varepsilon_T}$$

N* Workshop 2016

+ B cos(phi) + C cos(2phi)

Electrocouplings of the Orbital Excited Resonances from the CLAS $\pi^+\pi^-p$ Electroproduction Data

Independent fits in different W-intervals:

green: 1.51<W<1.61 GeV red: 1.61<W<1.71 GeV black: 1.71<W<1.81 GeV magenta: 1.56<W<1.66 GeV blue: 1.66<W<1.76 GeV

The $\pi^+\pi^-p$ electroproduction data are the major source of the information on electrocouplings of the $\Delta(1620)1/2^-$, $\Delta(1700)3/2^-$, and N(1720)3/2⁺ resonances which decay preferentially to the N $\pi\pi$ final states.

The CLAS $\pi^+\pi^-p$ Electroproduction Data at High Photon Virtualities

Q²-Evolution of the Resonant Contributions to the $\pi^+\pi^-p$ Electro-production off Protons Cross sections at 2.0 GeV² < Q² < 5.0 GeV²

• Resonant contributions were computed within the framework of unitarized Breit-Wigner ansatz successfully used for extraction of the resonance electrocouplings.

• $\gamma_v pN^*$ electrocouplings and $\pi\Delta/\rho p$ decay widths were taken from the CLAS results

Growth of the relative resonant contributions with Q² suggests good prospects for extraction of $\gamma_v pN^*$ electrocouplings in the entire range of 2.0 GeV²<Q²<5.0 GeV².

Description of the Differential $\gamma_v p \rightarrow \pi^+ \pi^- p$ Cross Sections at 2.0 GeV²<Q² <5.0 GeV² within the Updated JM17 model

• A good description of data at 1.4 GeV < W < 2.0 GeV and 2.0 GeV² < Q² < 4.2 GeV² was achieved with χ^2 /d.f. < 1.4.

Extension of the Experimental Results on γ_vpN* Electrocouplings and the Need for the Theory Support

- γ_vpN* electrocouplings of all prominent nucleon resonances in mass range M_{N*}<2.0 GeV and at 0.3<Q²<5.0 GeV² will be determined from independent analyses of Nπ, Nππ, channels measured with the CLAS.
- The information on the structure of orbital excited N* with total orbital momenta of dressed quarks L=1 and L=2 will become available for the first time.
- DSE evaluations of the [70,1⁻], [56,2⁺] SU_{sf}(6)-multiplet electrocouplings will extend the access to the strong QCD dynamics allowing us to address:
 - a) environmental sensitivity of the quark mass function to orbital excitations of three dressed quarks;
 - b) complexity of quark-gluon vertex dressing beyond rainbow-ladder truncation;
 - c) first studies of pseudoscalar and vector di-quark correlations.
- New data on γ_vpN* electrocouplings will shed light on dymaical Chiral Symmetry Breaking (DCSB) and its evolution with distance from studies of the chiral partners Δ(1232)3/2⁺/Δ(1700)3/2⁻ as the first step.

Orbital Excited N* and Quark-Gluon Vertex

<u>Simplest rainbow-ladder</u> (<u>RL</u>) truncation: All structures $L_{i\mu}$ are equal to zero except $L_{1\mu}$

Far from reality, but a reasonable approximation for the states with orbital momentum of quarks L=0.

Dressing of quark-gluon vertex beyond RLtruncation produces nonzero quark orbital angular momenta.

Talks by: D.Binosi, A.Kizilerzu, J. Papavassiliou , G.Eichmann at NPQCD16 Workshop: www.uhu.es gem/meeting/QCDNP201 program-LP.php

Electrocouplings of N* states with nonzero quark orbital angular momentum extend the capabilities for access to the complexity of quark-gluon vertex dressing beyond the simplest rainbow-ladder truncation.

Evidence for the New State N'(1720)3/2⁺ from Combined Analyses of $\pi^+\pi^-p$ Photo- and Electroproduction off Protons

The structure at W~1.7 GeV represents the major feature for W-dependencies of fully integrated cross sections at 0.5 GeV² < Q² < 5.0 GeV² (see also slide # 20).

N* hadronic decays from the data fit that incorporates the new N'(1720)3/2⁺ state

Resonance	BF(πΔ), %	BF(ρ p), %
N'(1720)3/2+ electroproduction photoproduction	47-64 46-62	3-10 4-13
N(1720)3/2 ⁺ electroproduction photoproduction	39-55 38-53	23-49 31-46
∆(1700)3/2 ⁻ electroproduction photoproduction	77-95 78-93	3-5 3-6

Successful description of $\pi^+\pi^-p$ photo- and electroproduction data achieved by implementing new N'(1720)3/2⁺ state with Q²-independent hadronic decay widths of all resonances contributing at W~1.7 GeV provides strong evidence for the existence of new N'(1720)3/2⁺ state.

N(1720)3/2⁺ hadronic decays from the CLAS data fit with conventional resonances only

	BF(πΔ), %	BF(ρp), %
electroproduction	64-100	<5
photoproduction	14-60	19-69

The contradictory Branching Fraction (BF) for N(1720)3/2⁺ decays to the $\pi\Delta$ and ρp final states deduced from photo- and electroproduction data make it impossible to describe the data with conventional states only.

The Parameters of N'(1720)3/2⁺ and N(1740)3/2⁺ from the CLAS Data Fit

The photo-/electrocouplings of N'(1720)3/2⁺ and conventional N(1740)3/2⁺ states:

N* at 0.05 GeV² < Q² < 7.0 GeV² with the CLAS12

Hybrid Baryons PR12-16-010	Search for hybrid baryons (qqqg) focusing on 0.05 GeV ² < Q ² < 2.0 GeV ² in mass range from 1.8 to 3 GeV in KA, N $\pi\pi$, N π (A. D'Angelo, et al.)
KY Electroproduction PR12-16-010A	Study N* structure for states that couple to KY through measurements of cross sections and polarization observables that will yield Q ² evolution of electrocoupling amplitudes at Q^2 <7.0 GeV ² (<i>D. Carman, et al.</i>)

Approved by PAC44

Run Group conditions:

 $E_{b} = 6.6 \text{ GeV}, 50 \text{ days}$

 $E_{b} = 8.8 \text{ GeV}, 50 \text{ days}$

- •Polarized electrons, unpolarized LH₂ target
- L = $1x10^{35}$ cm⁻²s⁻¹

Hunting for Glue in Excited Baryons with CLAS12

Can glue be a structural component to generate hybrid q³g baryon states?

Predictions of the N* spectrum from QCD show both regular q³ <u>and</u> hybrid q³g states

Search for hybrid baryons with CLAS12 in exclusive KY and $\pi^{+}\pi^{-}p$ electroproduction

The only way to establish the nature of a baryon state as q³ or q³g is from the Q² evolution of its electroexcitation amplitudes

CLAS12 N* Program at High Q²

E12-09-003

Nucleon Resonance Studies with CLAS12

Burkert, Mokeev, Stoler, Joo, Gothe, Cole

E12-06-108A

KY Electroproduction with CLAS12

Carman, Mokeev, Gothe

Measure exclusive electroproduction cross sections from an unpolarized proton target with polarized electron beam for Nπ, Nη, Nππ, KY:

 $E_b = 11 \text{ GeV}, Q^2 = 3 \rightarrow 12 \text{ GeV}^2, W \rightarrow 3.0 \text{ GeV}$ with the almost complete coverage of the final state phase space

Key Motivation

Study the structure of all prominent N^{*} states in the mass range up to 2.0 GeV vs. Q^2 up to 12 GeV².

CLAS12 is the only facility foreseen in the world capable to map-out N* quark core under almost negligible contributions from meson-baryon cloud

The experiments will start at the end of 2017!

Emergence of Hadron Mass and Quark-Gluon Confinement

N* electroexcitation studies with CLAS12 in Hall B at JLab will address the critical open questions:

How is >98% of visible mass generated,?

How confinement emerges from QCD and how it is related to DCSB?

Mapping-out quark mass function from the CLAS12 results on $\gamma_v pN^*$ electrocouplings of spin-flavor flip, radial, and orbital excited nucleon resonances at 5<Q²<12 GeV² will allow us to explore the transition from strong QCD to pQCD regimes with a traceable connection to the QCD Lagrangian.

Conclusions and Outlook

- High quality meson electroproduction data from CLAS allowed us to determine the electrocouplings of most well-established resonances in mass range up to 1.8 GeV from analyses of π⁺n, π⁰p, ηp and π⁺π⁻p electroproduction channels.
 - Profound impact on the exploration of strong QCD dynamics:
 - a) first DSE evaluations of $\Delta(1232)3/2^+$ and N(1440)1/2⁻ electroexcitation amplitudes with a traceable connection to the QCD Lagrangian;
 - b) synergistic efforts between the DSE theory and the experimental studies of $\gamma_v pN^*$ electrocouplings at JLAB revealed access to quark mass function for the first time.
 - c) reaction model developments pave a way to relating quark mass function to the measured observables of $N\pi$ and $\pi^+\pi^-p$ electroproduction channels based on DSE input for the low-mass N* electrocouplings.
- Electrocouplings of most resonances in the mass range up to 2.0 GeV will become available at Q²<5.0 GeV² from independent analyses of the new CLAS data on N π and $\pi^{+}\pi^{-}p$ electroproduction in the near term future.
- Future analyses the CLAS results on electrocouplings of N* resonances within the QCD-based framework will extend insight to the strong QCD dynamics addressing:
 - a) the environmental sensitivity/universality of dressed quark mass function,
 - b) complexity of the dressed quark-gluon vertex and qq-interaction kernel,
 - c) shed light on the DCSB manifestation in the structure of chiral partners $\Delta(1232) 3/2^+$ and $\Delta(1700)3/2^-$.

- After 12 GeV Upgrade, CLAS12 will be only available worldwide facility capable to obtain electrocouplings of all prominent N* states at still unexplored ranges of low photon virtualities down to 0.05 GeV² and highest photo virtialities ever achieved for exclusive reactions from 5.0 GeV² to 12 GeV² from the measurements of exclusive Nπ, π+π⁻p, and KY electroproduction.
 - The expected results will allow us:

•

- a) search for hybrid-baryons and other new states of baryon matter;
- b) to map out the dressed quark mass function at the distance scales where the transition from quark-gluon confinement to pQCD regime is expected, <u>addressing</u> the most challenging problems of the Standard Model on the nature of >98% of hadron mass and quark-gluon confinement.
- Success of N* Program with the CLAS12 detector at Jefferson Lab will be very beneficial for hadron physics community. It requires close collaborative efforts between experiment, phenomenology and the QCD-based hadron structure theory.

Back up

Fit of θ_π, θ_π, θ_p angular distributions requires essential contribution(s) from J^π=3/2⁺ resonances
 Accounting for the known resonances only results in <u>contradictory values</u> for the N(1720)3/2⁺ BF to the ρp final state inferred from the photo- and the electroproduction data

N'(1720)3/2⁺ New State at 2.0 GeV² < Q^2 < 5.0 GeV²

 $\gamma_v p N^*$ Electrocouplings from $N\pi$, $\pi^+\pi^-p$, and ηp Electroproduction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Consistent values of resonance electrocoupfings from analyses of $N\pi/\pi^+\pi^-p$ and $N\pi/N\eta$ electroproduction off protons demonstrate the capabilities of the developed reaction models to obtain resonance electrocouplings in independent analyses of these exclusive channels.

Electrocouplings of $\Delta(1232)3/2^+$, N(1440)1/2⁺, N(1520)3/2⁻, N(1535)1/2⁻, N(1675)5/2⁻, N(1680)5/2⁺, N(1710)1/2⁺ were published in the recent edition of the PDG , Chin. Phys. C40, 100001 (2016).

Nature of the Hadron Mass from N* Electroexcitation

- Good CLAS data description at the distances where quark core is the biggest contributor (Q²>0.8 GeV²), was achieved with realistic qq-interaction that generates momentum dependent quark mass.
- Data on ∆(1232)3/2⁺ electroexcitation from CLAS for the first time demonstrated that dressed quark mass which is running with momentum.