NINJA Experiment : Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

Tsutomu Fukuda (Nagoya Univ.) on behalf of the NINJA collaboration

J-PARC素粒子原子核セミナー, 23th Feb. 2017@Tokai

Contents

Introduction

Nuclear Emulsion Technology
NINJA Experiment

What is Nuclear Emulsion?

~100µm

3D tracking detector with submicron position accuracy

Photographic Film technology

- Nuclear Emulsion is a special photographic film.
- Signal is amplified by chemical process.

50 micron

along the particle passing through line

Recorded as silver grains

Resolution of 0.3 µm

	Merit	Image detection
Film camera	High resolution	ハロゲン化銀(Sliver halide) 光のエネルギーが起こす化学変化を利用した光化学反応。
Digital camera	Real time	電荷結合素子(Charged-Coupled Device) 光のエネルギーを雷気エネルギーに変換する光雷変換。

Largest Digital Camera ATLAS detector (~1.6 x 10⁸ image sensors)

Largest Film Camera OPERA detector (~10²⁰ AgBr crystals) 1 9000,000 emulsion films

Contribution for fundamental physics...

1896 (A. H. Becquerel) Discovery of Radioactivity

1947 (C. F. Powell et al.) Discovery of π

1971 (K.Niu et al.) Discovery of charm particle in cosmic-ray

2001 (K.Niwa et al.) Direct observation of V_{τ}

1896

1971

Nuclear Emulsion Detector

3D reconstruction

4π detection

Scalability

Momentum, dE/dx measurement

Nuclear Emulsion Detector

Charged Particle

Polymer (C, (N,O)) — Silver halide crystal (AgBr)

Development treatment

Ionized electrons concentrated on the electron trap to form the latent image specks in a crystal

 $Ag^{+} + e^{-} \rightarrow Ag_{1} \cdot \cdot \cdot Ag_{n}$

Nuclear Emulsion Detector

Nuclear spallation reaction by heavy ion

100 µm

Spatial resolution

- silver halide crystal size
- number density of silver halide crystal

Sensitivity

- Chemical treatment
- Crystal defect and doping etc.

Readout of tracks in Emulsion

Image sensor Resolution Microscope 512x512 pixels Image Z-axis Field of View sensor 230x230µm² Objective 35x ~3µm Depth of Field Sensitivity **Emulsion** (front side) Nuclear emulsion film/plate 45~100 μm Film base 200~800 µm Emulsion (back side) 45~100 μm

Microscope view

Sensitivity 35 silver grains /100μm

.

*

Long history in Neutrino Research

- 1978-1983 Fermilab E531 ~ 100kg charm physics, $v_{\mu} \rightarrow v_{\tau}$ oscillation <20GeV>
- 1994-2000 CERN WA95 CHORUS ~ 1 ton $v_{\mu} \rightarrow v_{\tau}$ oscillation, charm physics <27GeV>
- 1997-2001 Fermilab E872 DONuT ~ 1 ton first v_{τ} direct observation <80GeV>
- 2008- CERN CNGS01 OPERA 1250 ton $v_{\mu} \rightarrow v_{\tau}$ oscillation <17GeV>

Recent technical improvements

Readout technique

High Speed Scanning

HTS 9,000cm²/h, x100 faster

Large angle tracking technique

Detector technique High Sensitive film

New type GD= 86.1± 4.7 100um OPERA type 100um 100um

Time resolution

Charge sign ID

Hyper Track Selector

Processer: 72 GPUs

Speed in cm²/ hour 5000 10000 1000 100 ×70 10 08 0.1 0.003 0.01 0.001 TS(TTL) NTS(CPLD)UTS(FPGA) S-UTS HTS 1983 1994 1998 (FPGA) (GPGPU) 2006-2015Objective lens: FOV 25mm²

Emulsion film to be scanned . 25x38 cm² or 25x25cm² 1~1.5 hour

Scanning time is shared by projects. In total about 100 m² film area (>1000 films) were scanned in recent 12 months

Camera:

2MP 72 sensors

Gel Production Machine at Nagoya Univ.

NINJA Experiment

Current situation on neutrino physics

Motivation

- Precise neutrino-nucleus interaction measurement is important to reduce the systematic uncertainty in future neutrino oscillation experiments.
- We started a new experiment at J-PARC to study low energy neutrino interactions by introducing nuclear emulsion technique.
- The emulsion technique can measure all the final state particles with low energy threshold for a variety of targets (H₂O, Fe, C,...).
- Furthermore its ultimate position resolution allow to measure v_e cross section and to explore of a sterile neutrino.

Precise measurement of neutrino-nucleus interactions

- CCQE interaction events are used as signal to reconstruct energy in T2K/SK. $E_{QE} = \frac{m_p^2 - (m_n - V)^2 - m_\mu^2 + 2(m_n - V)E_\mu}{2((m_n - V) - E_\mu + p_\mu \cos \theta_\mu)} \quad \underbrace{\forall}_{--- \neq ---}$
- Other interaction modes contaminate due to final state interaction in nucleon and detector inefficiency.
- Energy can't be reconstructed correctly with these interaction modes.
 → Need precise understanding about neutrino interaction.

uncertainties on predicted events at SK				
	$ u_{\mu} \text{ sample}$ 1R _{μ} FHC	v _e sample 1R _e FHC	$\overline{\nu}_{\mu}$ sample 1R _{μ} RHC	$\bar{\nu}_e$ sample 1R _e RHC
v flux w/o ND280	7,6%	8,9%	7,1%	8,0%
ν flux with ND280	3,6%	3,6%	3,8%	3,8%
v cross-section w/o ND280	7,7%	7,2%	9,3%	10,1%
v cross-section with ND280	4,1%	5,1%	4,2%	5,5%
ν flux+cross-section	2,9%	4,2%	3,4%	4,6%
Final or secondary hadron int.	1,5%	2,5%	2,1%	2,5%
Super-K detector	3,9%	2,4%	3,3%	3,1%
Total w/o ND280	12,0%	11,9%	12,5%	13,7%
Total with ND280	5,0%	5,4%	5,2%	6,2%

a an unus d'attait au ante att

NINJA 実験

Neutrino Interaction research with ²³ Nuclear emulsion and J-PARC Accelerator

原子核乾板は、MEC反応を測定する極めて有効な手段

ニュートリノ反応の精密測定

v exposure status of NINJA

- We have demonstrated the basic experimental concept at J-PARC site.
- "Detector performance run" was started from last Jan.

NINJA Roadmap

- The aim of T60/T66 is a feasibility study and detector performance check to make a future plan.
- We will expand the scale of detector gradually, step by step.

<u>Status review of NINJA</u> Emulsion gel production in the lab

Nuclear emulsion films were made by ourselves.

Signal efficiency \rightarrow Grain density Isolated random noise \rightarrow Fog density

Initial and long-term performance of new emulsion gel is kept at safety level for signal and noise.

Status review of NINJA

Conceptual detector design

Status review of NINJA

Reconstructed track data

28

Track reconstruction

- Two base track segments are tried to be connected assuming cut off momentum.
- They are connected if the position and angular difference within the allowance.
 - Position difference between two segments extrapolating at middle place.
 - Angular difference

Continue to all possible combination of two tracks \rightarrow all tracks are reconstructed.

Status review of NINJA

Event analysis sample

Status review of NINJA

 $\theta_{0} = \frac{13.6}{(pc\beta)} \times \sqrt{\frac{x}{X_{0}}} \times \left[1 + 0.038 \ln\left(\frac{x}{X_{0}}\right)\right],$

Interacted in emulsion region

(b)

<u>Status review of NINJA</u>

Time stamp for v event with Emulsion Shifter

33

³⁴ <u>Emulsion-INGRID Hybrid analysis</u>

Time resolution for emulsion tracks

Status review of NINJA v exposure in May 2015. Water target emulsion detector

Water Target ~ 1.5kg ightarrow 10-20 $\overline{
u}$ events

35

	E.	Interacted in Water region
	The second second	1
A YARSON		
	A S AL	陽子/
	A CAR	Range~2cm
		(1) $(\tan\theta x, \tan\theta y) = (-0.040, 0.845)$ M.I.P
Sandwich structure of Emulsion		(2) $(\tan \theta x, \tan \theta y) = (-0.589, -0.074)$ proton
films and Frame type spacers	Pouring water	Minimum distance(①-②)=2.4um, depth=620um

First detection of v - Water interaction with Emulsion Detector

Status review of NINJA

Detector Run

We are starting Detector Run to compare MC with high statistics.

T60: GRAINE 2011 version T60 extension GRAINE 2015 version

Detector installation

Condition of the emulsion film

Development process

XAA Stop 60 min. 25 min. <u>1</u>0 min.

Fix

Wash 60 min.

Data quality check and track reconstruction is under progress.

<u>Status review of NINJA</u> Event analysis is now in progress !

2.5

3.5

4.5

~80% of event have proton
 0 MIP events are detected.
 → neutron interaction ?

Examples of neutrino event one by one

Detector Run(T66)v beam exposure : Dec. 2016- Apr.2017- R&D for Water target Emulsion detector

大型水標的検出器によるニュートリノー水反応の精密測定に向けて検出器R&Dを継続中 2018年後半に100kg 級の検出器を設置予定。

- We are performing a neutrino experiments at J-PARC to study low energy neutrino - nucleus interactions with nuclear emulsion (NINJA).
- We are carrying out a test experiment at J-PARC to check the feasibility and detector performance.
- Beam exposure and film development for the 60kg iron target ECC was successfully done and the event analysis is now in progress.
- R&D for Water target ECC is performing.
- Now we are discussing about next Physics Run with a large scale water target emulsion detector.

Feasibility study: 1.5kg Water target ECC

Water target emulsion chamber

First detection of v - Water interaction with Emulsion Detector

Detector Run: 60kg Iron target ECC

Detector preparation

We carried out "Refresh" process to delete noise tracks like OPERA experiment.

Detector Run: 60kg Iron target ECC

Installation @J-PARC (Jan. 11-20)

Detector was constructed @SS floor.

T60 emulsion detector is mounted in cooling box to keep good quality (no refresh).

Large angle scanning on HTS

Related activity

Workshop on Hadron Production Measurements with Nuclear Emulsions

