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1. Introduction

++ Exotic hadrons and their structure ++
= Exotic hadrons --- not same quark component as ordinary hadrons

S @

Y e D r P I D

Penta-quarks Tetra-quarks Hybrids Glueballs Hadronic
--- Actually some hadrons cannot be |

described by the quark model. ;

o Do exotic hadrons really exist ?

o If they do exist, how are their properties ? Ordinary hadrons

--- Constituent quarks in multi-quarks ? “Constituent” gluons ?

o If they do not exist, what mechanism forbids their existence ?
<-- We know very few about hadrons (and dynamics of QCD).
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1. Introduction

++ Uniqueness of hadronic molecules ++
= Hadronic molecules should be unique, because they are

composed of hadrons themselves, which are color singlet.

@@ & @

q q 8 8
Hadronic % D %{7 @
molecules q q q q .9
(cf. deuteron) | mafll -

--> Various quantitative/qualitative diff. from other compact hadrons.

o Large spatial size due to the absence of strong confining force.

o Hadron masses are “observable”, in contrast to quark masses.
--> Expectation of the existence around two-body threshold.

o Treat them without complicated calculations of QCD.
--- We can use quantum mechanics with appropriate interactions.
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1. Introduction

++ Hadronic molecules and quantum mechanics ++

= An example of hadronic molecule: deuteron.

200 38'1 o “ NN phase shift o.s» - __s-wave @@
§ 150 7 é‘; 0.4
: w 1| Machleidt, Phys. Rev.C63 |2
g % ‘ (2001) 024001. % o
50 O - 5
e SN Wave function N7
0 100 200 300
Lab. Energy (MeV) Of deUteron ’ ’ r(fzm) ’ )

o Deuteron is a proton-neutron bound state. <-- Who proved this ?
--- Weinberg proved this by using general wave equations
in quantum mechanics in the weak binding limit (B << Etypical)-
<-- Without using QCD ! Weinberg (1965).
o Introduce field renormalization constant Z: | Z = (B|Bo)(Bo|B)

--> “Bare” component | By > in the total wave function | B >.
- 2(1 o Z) —1 _ Z —1 . 1
o= R+0(m_ "), re= 1_ZR+(’)(m7r ), R= e,
a = 5.419+0.007 fm, 7. =1.7513+0.008 fm =--> Consistent with Z~=0!
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1. Introduction

++ Hadronic molecules and quantum mechanics ++

= An example of hadronic molecule: deuteron.

WwE 33" "~ 1| NN phase shift oo @@
£ =t - o
a§> 100%\ ] Machleidt, Phys. Rev. C63 =
g % : (2001) 024001. % oa
50 - b.!\, ~ £
S I e, Y Wave function .
O ab Energy (MeV) of deuteron

o Lesson: In a similar manner, we can study the structure of
general hadronic molecules.

--- We can use quantum mechanics to investigate them:
Two-body wave function, its norm = compositeness (2&1%),
scattering amplitude, ...

<--> For hadrons of other configurations, we have to treat

color multiplet states explicitly and appropriately.
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1. Introduction

++ How to clarify their structure ? ++

V(Qq)

= How can we use quantum mechanics
to clarify the structure of
hadronic molecule candidates ? A @

s We evaluate the wave function of

hadron-hadron composite contribution.
--- ¢f. Wave function for relative motion of
two nucleons inside deuteron. q

= How to evaluate the wave function ?
<-- We employ a fact that the two-body wave function appears
in the residue of the scattering amplitude of the two particles
at the resonance pole.
--- The wave function from the residue is automatically normalized !
--> Calculating the norm of the two-body wave function
= compositeness, we may measure the fraction of the
composite component and conclude the composite structure !
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1. Introduction

++ Purpose and strategy of this study ++
= In this study we evaluate the hadron-hadron two-body wave

functions and their norms = compositeness for hadron resonances
from the hadron-hadron scattering amplitudes.

= We have to use precise scattering amplitudes for the evaluation.

--> Employ the chiral unitary approach.
Kaiser-Siegel-Weise (°95); Oset-Ramos (’98); Oller-Meissner (’01); Lutz-Kolomeitsev (°02);
Oset-Ramos-Bennhold (’02); Jido-Oller-Oset-Ramos-Meissner (’03); ...

\\ (/’ \\\ /’ \\\ ">\\ (I,
T =V +VGT ‘ . - K ¥ e M g e o
—— ) > - D>

o Interaction kernel V from the chiral perturbation theory:
Leading order (LO) + next-to-leading order (NLO) (+ bare A).

o Loop function G calculated with the dispersion relation
in a covariant way.

m We discuss the structure of A(1405), N(1535), N(1650), and A(1232).
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2. Two-body wave functions
and compositeness
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2. Wave functions and compositeness

++ Setup of the quantum system ++
= Problem: Calculate the wave function of a bound state,

both in the stable and unstable cases.

o Interaction V is known.
‘ | @

S .
o Full Hamiltonian: H =Hy+V
--- Free part has eigenstates of 2

q
scattering states:  1,|q) = E(q)lq) (9) = Mun + 2u

V(q)

0 Wave function (momentum space): (q|¥) = ¥(qg) \

o The Schrédinger equation: A|¥) = (Hy + V)|¥) = E, 0| )
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2. Wave functions and compositeness

++ How to calculate the wave function ++
= There are several approaches to calculate the wave function.

Ex.) A bound state in a NR single-channel problem. T\

S

o Usual approach: Solve the Schrédinger equation. |~ r

=
H|¥) = (Ho +V)[¥) = Epole|¥)
--- Wave function in coordinate / momentum space:

(r|¥) = () (al¥) = 3(q)

--- | ¢ > Is an eigenstate of
free Hamiltonian Hy:

V) = Bon0)

Hola) = E@)|9) | p(g) = My, + 3—
)

--> After solving the Schrodinger equation,
we have to normalize the wave function by hand.

/ EriyrE)’ =1 or / (;er(;g [zﬁ(q)r =1 <-- We require !
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2. Wave functions and compositeness

++ How to calculate the wave function ++
= There are several approaches to calculate the wave function.

Ex.) A bound state in a NR single-channel problem. T

S

o Qur approach: Solve the Lippmann-Schwinger > r
equation at the pole position of the bound state.

A

T(E)=V+V

(q'|T(E)|q)

--- Near the resonance pole position E,.., amplitude is dominated
by the pole term Iin the expansion by the ei%enstates of H as

. A 1 n 4 )
(q"|T(E)|q) ~ (Q"IV|‘1’>E .y (&*[V1]g) 1©), |ghun), - | (€|, (Grunl; ---
pole
--- The residue of the amplitude S 1=+ y
at the pole position has information on the wave function !
(7IV]®) = (7|(H — Ho)|¥) = [Epole — E(q)]iﬁ(q) 2
- . E(q) = My, + —
(U*V1g) = [Epore — E(q)](9) W= Mt o
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2. Wave functions and compositeness

++ How to calculate the wave function ++
= There are several approaches to calculate the wave function.

Ex.) A bound state in a NR single-channel problem.| T )

o Qur approach: Solve the Lippmann-Schwinger > r
equation at the pole position of the bound state.

--- The wave function can be extracted from
the residue of the amplitude at the pole position:

. ey 7(@)7(g)
T , B) = TE = o "
@G E) =TS 57 1) = @019 = B — B@)H(
--> Because the scattering amplitude cannot be freely scaled
due to the optical theorem, the wave function from the residue
of the amplitude is automatically normalized !

2 .
If purely molecule --> / d’q v(9) _,| <—We obtain !
(2m)° | Epole — E(q) E. Hernandez and A. Mondragon,

Phys. Rev. C 29 (1984) 722.
--> Therefore, from hadron-hadron scattering amplitudes with
resonance poles, we can calculate their two-body wave function.
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2. Wave functions and compositeness

++ Example 1: Stable bound state ++

= A A hyperon in A = 40 nucleus.
--> Calculate wave functions in 2 ways.

1. Solve Schrodinger equation:

2@+ [ (Ve i) - Funl(@)

,_,‘
V. By [MeV]

--> Normalize y by hand ! /

(27r)3 ]2 -

2. Solve Lippmann-Schwinger

0

5t
-10
-15
-20
-25
-30
-35
-40

Woods-Saxon
potential

equation:

1, 4 B) = V(d, a) + [ (Zﬂ')“s Vi, k)-TE(lf}c)q; E)

¥-> Extract WF from the residue:

T(q, q; E) = ;(2);51) ~> | ¥(a) = Epo:(f)E(q)

--- Without normalizing by hand !

@ |Hin Seminar @ JAEA (Apr. 26, 2016)
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2. Wave functions and compositeness

++ Example 1: Stable boulr() - < [&(q)r

3
= A A hyperon in A =40 nucleus oot — (2m)

' Schr.0s T[]
--> Calculate wave functions in| | ¢¥ LS, 05 — ]
At i I 0.008 P Schr.0p ©)
1. Solve Schrodinger equation .| i ‘ LS, 0p =e==s |
- d3ql _ - R 0.006 | ! . R & Schr.0d A ‘
E(Q)T/)(Q) + (2W)3V(Qa q )¢(Q) - Epole¢(q I> ' : > 6 LS., Od seevvenns
................. é’ 0.005 | ) Schr. | s :
--> Normalize vy by hand ! /( N o, 0004
0.003 | 1
2. Solve Lippmann-Schwinger 0.002 |
equation: 000115/ o
~ d*k V(q, k 0 50 105 150 200 250 300 350 400
/ . — / 9
T(q',q; E)=V(dq, q) +/ (27)3 EL g [MeV]

o In 1st way: Points.
2nd way: Lines.
T(d, q; E) ~ ;((i);ﬁ) > U(q) = Epolz(f)E(q) o Exact coincidence !
--- We obtain auto-
matically normalized
WF from the Amp. !

--> Extract WF from the residue:

--- Without normalizing by hand !

@ |Hin Seminar @ JAEA (Apr. 26, 2016) 17




2. Wave functions and compositeness

++ Example 2: Unstable resonance state ++

= Unstable resonance in KN-nX system
--> Calculate wave functions in 2 ways.

1. Solve Schrc’idinger equation:

1/)_7 Q)+Z/ o )3 Jk q q "/)k(Q)— pole"/’g(q)

V. Bp [MeV]

--> Normalize ), by hand !

X1+X2—1, X /

(27f)3

J

-1

-1

2. Solve Lippmann- Schwmger

20

0

20 |

40 |

-60

-80 t

00

20

............

Threshold of channel |

Coupling strength is
controlled by x.

Threshold of channe

Gaussian potential

12

.............................................

1 1.5 2 2.5
r [fm]

3

equation:

Tix(d', q; E) = MQQ+Z/(

&k Va(d, WTix(k, g E)

E — Ei(k)

--> Extract WF from the residue:

vi(a) vk (q)

T:x(d', q; E) =
]k(q y ) E_Epole

->

T

Epole — E;(9)

--- Without normalizing by hand !

(®)| #\i) 1
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2. Wave functions and compositeness

++ Example 2: Unstable resonalp (@) = 2 Thy(@)]

» Unstable resonance in KN-1  o.004

(2m)?,

Schr. KN. Rev. pall‘l“ | E]
--> Calculate wave functions 0.003 | Ls. KN. Re. par
LI . Schr. KN, Im.part O
1. Solve Schrodlnger equati " 00 S, RN.Im.part memes
E(QIP] q)+Z/ o) gk (9, q ¢k(Q)——': 0.001 |
V| d a0 06000 r i e
-> Normalize vy, by hand ! | 2 owiisip ¥ PP RARARAT R
1| e vV AQ’
X1+ Xo=1, X;= /(2 )3 ['t,bj(q)] | -0.001 Q % Schr. x¥, Re.part A
ol O “ ) LS. =L, Re.part seeeeeees
- — 0002 \  a . .
v QO Schr. X, Im. part A\V4
2. SOIV?“ Bg [MeV] 22.6 0,003 Q\@,’ | | LS, =X, 11?1. part ==+
equall  r Mev] 14.7 770 100 200 300 400 500 600 700
, X 0.99 — 0.083 MeV]
Tjk (q y 4 E . . : q
§2 L ‘1)-8(1) i g-ggz v~ k) o In 1st way: Points.
--> Extra 2L - 22— ' p: 2nd way: Lines.
Tir(d, q; E) ~ v @@ | %i(q) = %(9) o Coincidence again !
E — Epole Epole — B (Q) --- Our method is valid

--- Without normalizing by hand !

@ |Hin Seminar @ JAEA (Apr.26,2016)
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3. Applications: compositeness
of hadronic resonances
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3. Applications

++ Wave functions for hadrons ++
» We can obtain normalized WF from

the Scatt. Amp. even for resonances.

Chinese Physics C

= However, if the interaction depends on
energy, the norm deviates from unity.
<-- Interpreted as the contribution from a

Review of Particle Physics

Seandard Model | missing channel | v >. I.S.,Hyodo and Jido,
&g PTEP 2015, 063D04.
1= [ G|+ o)

= By using this fact, we can interpret
the norm = compositeness ( X ) of
the wave function from the Amp.
as the “fraction” of the two-body state
for a resonance Iin general interaction.

Particle Data Group (2014). (U7 |¥) = ZX t+Z=1 X, = / 271_)3 (U*|g;)(q;| )

(similar but not same as our compositeness)

@ [, Seminar @ JAEA (Apr. 26,2016) ' 21




3. Applications

++ Our strategy ++

= In this study we investigate the structure of hadronic molecule
- . . T.S.,T. Arai, J. Yamagata-Sekihara and
candidates in the following strategy. S. Yasui, Phys. Rev. C93 (2015) 035204.
1. Construct hadron-hadron scattering amplltude which precisely
reproduces experimental data and contains resonance poles for

hadronic molecule candidates, in appropriate effective models.

\ I( — \ /( + \ /,’>\\\ /(
@ ' ' : - @ -

d4q” V g, q": S)le(q " 3)
T. L, . V ) y Y
k(@' G5 8) =Vir(q', 4 +"Z/(27r ml)[(P q)* — M}

2. Extract the two-body wave function from the residue of
the amplitude at the resonance pole.

Tik(q’, @5 8) = v (@) v (q)

p)

+ (regular at s = spole)

S — Spole ’Yj (q) = <Q:7IV|\I’> - [89019 T 8.7 (q)]’l'zj (q)

(@)| e Seminar @ JAEA (Apr. 26,2016) 2




3. Applications

++ Our strategy ++
= In this study we investigate the structure of hadronic molecule

g . - T.S.,T. Arai, J. Yamagata-Sekihara and
candidates In the following strategy. S. Yasui, Phys. Rev. & (2015) 035204,

Tix(@', 45 8) = S(_ )SZ’ZEZ) + (regular at s = spoie) | | v,(q) = (§;|V|¥) = [5pote — 5;()]%;(q) l

3. Calculate the compositeness X; = norm of the two-body wave
function in channel j, from Amp. and compare it with unity.

- ool - | s [

(27)3 2w;(q)2;(q) [ Spole — 8;(q)

o The sum of X; will exactly unity for a purely molecular state.

<= The Iinteraction does not have energy dependence.
E. Hernandez and A. Mondragon (1984).

o On the other hand, if the interaction has energy dependence,
which can be interpreted as the contribution from a missing
channel, the sum of X; deviates from unity. X, =1-

--> Fraction of a missing channel Is expressed by Z:

-- Same as the Welnberg s Z.
@ |Hin Seminar @ JAEA (Apr.26,2016) 23
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3. Applications

++ Observable and model (in)dependence ++
= Here we comment on the observables and non-observables.

o Observables:

Cross section. A Im

Its partial-wave decomposition.
--> On-shell Scatt. amplitude

via the optical theorem.
Mass of bound states.

o NOT observables:
Wave function and potential.
Resonance pole position.
Residue at pole.

Mp

| st Riemann sheet \£

m+M Observables

@-W

X E pole

Not:observables

2nd Riemann sheet

Off-shell amplitude.

--> Since the residue of the amplitude at the resonance pole is NOT

observable, the wave function and its nhorm = compositeness are
also not observable and model dependent.
--- Exception: Compositeness for near-threshold poles.

@ |Hin Seminar @ JAEA (Apr. 26,2016)
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3. Applications

++ Observable and model (in)dependence ++
= Special case: Compositeness for near-threshold poles.

--- Compositeness can be
expressed with threshold A Im I st Riemann sheet \£
parameters such as scattering
length and effective range.

o Deuteron. m+M oObservables .
Weinberg (’°65).

0 f0(980) and a¢(980). Mp

Baru et al. ’04), X E
Kamiya-Hyodo, arXiv:1509.00146. pole
o A(1405). Not.observables

Kamiya-Hyodo, arXiv:1509.00146.

2nd Riemann sheet

D EER

= General case: Compositeness are model dependent quantity.

--> Therefore, we have to employ appropriate effective models (V')
to construct precise hadron-hadron scattering amplitude, in order
to discuss the structure of hadronic molecule candidates !

@ Hin Seminar @ JAEA (Apr. 26, 2016) -




3. Applications

++ List of hadron resonances in our analysis ++
= |n this talk, we discuss the structure of candidates of hadronic

molecules listed as follows in terms of the compositeness:

1. A1405).

--- One of classical examples of
the exotic hadron
candidates.

?2°°?
s d

2. N(1535) and N(1650).

--- Expected to be usual gqq
states, but can be described
also in meson-baryon d.o.f.

Kaiser-Siegel-Weise (°95), Bruns-Mai-Meissner (’11), ...

3. A(1232).

--- Established as a member of
the decuplet in the flavor
SU(3) symmetry, together
with X(1385), =(1530), and €,

in the quark model, but ...

|

"
o)

.

et HUll ..o
MESON B .'l“*n-.‘ . i
- Meson
e a\ cloud
bare A\ effect

~. ~30 %!

| M1 form factor
|ofyN-->A(1232) " || Satoand Lee
| 0" (Gev) °09).

@ |Hin Seminar @ JAEA (Apr. 26, 2016) 2



3. Applications

++ Chiral unitary approach ++
= We employ chiral unitary approach for meson-baryon scatterings.

TéL,Jk( L jk(s . Z oL ]l GL 1 3) le(S) \\\ ’,(' i \\ ,'(’ + \‘\

=
| +@—>— —{ — —>—D—>—@—>—

o For the interaction kernel V we take LO + NLO (+ bare A) of chiral

perturbation theory and project it to partial wave L and quantum

number o to construct a separable interaction. --> Vprime,

’
’
.
’
’

> P A N —

\‘,::c.’/ VoL ik = 7% x Vc;L,jk(S)

o The loop function G Is obtained with the dispersion relation:

© ds' p.(sa.(s' 2L
GL’J'(S)=/ ds’ p;(s')g;( ) _

2 8 —s—10
“th,.j

d'q q[** 0i(s): phase space
(2m)* [(P — ¢q)? —m2](¢*> — M?) | in channel j.

--- We need one subtraction for s wave / two subtractions for p wave
which are fixed as discussed below.

@) |ton
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3. Applications

++ Compositeness with separable interaction ++
= For the separable interaction, which we employ In this study,

we can calculate the residue at the resonance pole as:

=/ | - =17, 1 %Y — ALY, p— |1V |3 pr— 7| L
(@'|T(3)|T) = (T'|V (Spole) | T) (T*|V (sp0re)|q) | IVIY) = (T |VIg) = g x|
§ — Spole Aceti and Oset, Phys. Rev. D86 (2012) 014012;

T.S.,T. Arai, J. Yamagata-Sekihara and S. Yasui, Phys. Rev. C93 (2015) 035204.
o For resonances in L wave, g is the coupling constant.

o This form is necessary for the correct behavior of the wave
function at small g region: ) — 0(4%) for small q}

= As a result, the norm of the two-body wave function is written as

_ [ d% $i(@) st/ ron 2 [4GL
%= [ an 2r)® 2, ()0, () 1)\ GY) = 93[ s L

g i - : T.S.,T.Arai, J. Yamagata-Sekihara and
G is the |00p function in L wave. S. Yasui, Phys. Rev. C93 (2015) 035204.

<=> Elementariness Z with separable AVar jk
: ion. Z==)_0x9; |GrL; —GLk |
Interaction: ——

@ |Hin Seminar @ JAEA (Apr.26,2016) 5




3. Applications

++ Compositeness for A(1405) ++
= A(1405) --- The lightest excited baryon with J? = 1/2-, Why ??
o Strongly attractive KN interaction in the 7 = 0 channel.
--> A(1405) is a KN quasi-bound state ??? Dalitz and Tuan (°60), ...

29?7
(s d

= We use the lkeda-Hyodo-Weise amplitude for A(1405) in chiral
unitary approach, which was constrained by the recent data of
the 1s shift and width of kaonic hydrogen. ikeda, Hyodo, and Weise (’11), ("12).

--- V: Weinberg-Tomozawa term + s- and u-channel Born term

. ’ -
. " s M “.. .
. - ’ - -
\ « \ 4 N
. . YL
¢
. . ’ ,"~

— - > & » e
+ NLO term.

LN
- ‘.' -
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3. Applications

++

= A(1405) --- Th
o Strongly att
--> A(1405) Is

= We use the Ik
unitary apprc
the 1s shift ar
--- V: Weinberg

+ NLO ter
“\\\ ,'l‘
> 'u.o HI

o(K p—= 7 X% [mb] o(K p— K p) [mb)

o(K p— n"%") [mb]

250

150 ¢
14
100 ¢

50 ¢

100

100

150 200

Pl [MeV /c]

250

o & & 8 8

150

Pl [MeV /c]

200

50

100

200
Pl:\b [I\le\"/c]

150

230

o(K " p - K°) [mb]

o(K p-n'S") [mb)

a(K p—n"A") [mb]

80 -

%0

ot

2 b .

a0 | ! ' - i

ol Tt

"5 100 150 200 250
P [MeV /]

300

50 100 150

200 250

Plab [.\lcV/c]

50 100 150 200 250

Plah [1\19\!’/(‘.]

orn term

| A
{1, Why ??

inel.
'uan (’60), ...

)5) In chiral

' lcent data of

lo, and Weise (’11), (’12).

o"
~
~\ "‘
q.‘,

" .

g -~
. -~

@

'Hd:)fl
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3. Applications

— — _
+4H 2 . ++
= A(1405) — Th 2 - I, Why 22
b 3 |
o Strongly att| ! r | | Inel.
n | -
-=> A(1405) Is X X uan (°60), ...
“s0 100 150 200 250 "0 e 150 200 250
Plab [I\IeV/c] Plab [I\IeV/c]
z wf 7 |
25
& £
> 5
X -
T T
IQ. IQ
ol )
= <
@ g
oo —_
T Ta0 130 1380 1400 1420 1440 1340 1360 1380 1400 1420 1440
Vs [MeV] Vs [MeV]
| —ﬁﬁ TTab ¥V /w] T ab Vi€V /]
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3. Applications

++ Compositeness for A(1405) ++

= Compositeness X and elementariness Z for hadrons in the model.
T.S. , Hyodo and Jido, PTEP 2015, 063D04.

dG; de
0 A(1405) (two poles!). Xi = ~9; [ ds L:s n 4= Zg’“g’[ s ]

S=S8pole

A(1405)

0.6 J

T [1/MeV]
0%

04 A(1405), higher pole A(1405), lower pole
- v/Spole 1424 — 26: MeV 1381 — 817 MeV
e : . Im[z] [MeV] XKN 1.14 + 0.012 —0.39 — 0.072
vy Vs X, —0.19 — 0.22i 0.66 + 0.52i
Hyodo and Jido (’12). XnA 0.13 + 0.02: —0.04 + 0.01z
Ji| Xg= 0.00 + 0.00: —0.00 + 0.00z
--- Large KN component | z —0.08 + 0.19i 0.77 — 0.46i
for (higher) A(1405),

since Xgy is almost unity with small imaginary parts.

- JA= Seminar @ JAEA (Apr. 26, 2016) 32
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3. Applications

++ Compositeness for N(1535) and N(1650) ++
= N(1535) and N(1650) --- Nucleon resonances with J? =1/2-.
o We naively expect that they are conventional ggq states, but
there are several studies that they can be dynamically generated
from the meson-baryon degrees of freedom without explicit

resonance poles, especially in the chiral unitary approach.
\ 7 B Kaiser-Siegel-Weise (’95); Nieves-Ruiz Ariola (’01);

_,_@_,_ = —>—\D'—>— —>—D—>—@—>— Inoue-Oset-Vicente Vacas (°02);

Bruns-Mai-Meissner (’11); ...

o For example:
--- V: Weinberg-Tomozawa term

0.6 |

. 7 0.4 |

-—
+ NLO term.

< o
wan . - 0.2}
Bruns, Mai and Meissner, oall ‘ P
Phys. Lett. B 697 (2011) 254. o " Woms [MeV] "

0.2 |
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3. Applications

++ Compositeness for N(1535) and N(1650) ++
= N(1535) and N(1650) --- Nucleon resonances with J* =1/2--.

o We naively expect that they are conventional aaa states. but

there are several studies that
from the meson-baryon degre

/

resonance poles, especially i

\\ ’ ’ . F
Y v o v 0 %, / -0.1
: '1 — 3 X '/ R . ’l’ \\ ,1 .

‘é’ -0.2
o For example: = :
--- V: Weinberg-Tomozawa tern |
N A - 0.9 |
+ NLO term. B W\
-0.4}//Ii8
‘\". ."" lLl\- W
- = - 22 23 24 25 26 27 28
Bruns, Mai and Meissner, i Re s
Phys. Lett. B 697 (2011) 254. 1200 00 ems (Mev) 00 200
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3. Applications

++ Compositeness for N(1535) and N(1650) ++
= N(1535) and N(1650) --- Nucleon resonances with J? =1/2-.

= We construct our own s-wave aN-nN-KA-KX scattering amplitude
in the chiral unitary approach.

o V: Weinberg-Tomozawaterm | . .-~ |+NLOterm| . .

o G: Subtraction constant is fixed
in the natural renormalization ’
scheme, which can exclude T o
explicit pole contributions S acos T
ING. Gpo(s=M})=0 |
Hyodo, Jido and Hosaka, Phys. Rev. C78 (2008) 025203. R e T T STy

o Parameters: The low-energy constants in NLO term.
--> Parameters are fixed so as to reproduce the N scattering

amplitude Si; as a PWA solution “WI 08” up to vs = 1.8 GeV.
Workman et al., Phys. Rev. D86 (2012) 014012.
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3. Applications
++ Compositeness for N(1535) and N(1650) ++

0.8

0.6

0.4

Sll

0.2

0

= Fitted to the NV amp

litude WI 08 ( S:

Fit, Real part

Fit. Imaginary part
W1 08, Real part
WI 08, Imaginary part

®
O

14

-0.2 &=

@

HI]‘)"l

1)-
> 42/ Naor. = 94.6 / 167 0.6.

o Chiral unitary approach
reproduces the amplitude

of PWA very well.
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3. Applications

++ Compositeness for N(1535) and N(1650) ++
= Fitted to the nV amplltude WI 08 ( S11).

0.8

0.6

-0.2 &=

Fll Real palt _
Fit. Imaginary part - -
W1 08, Real part ®

W1 08, Imaginary part O

> 42/ Naos. = 94.6 / 167 = 0.6.

O%@% o Chiral unitary approach

g;' reproduces the amplitude
o

of PWA very well.

N (1535) N (1650)

1 ‘ nN KA KT XKA
1.1 1.2 1.3 1.4 1.5 1.6 ' XKZ
w [GeV] A

1496.4 — 58.7:  1660.7 — 70.0z

—0.02 + 0.032 0.00 + 0.042
0.04 + 0.372 0.00 + 0.01z
0.14 + 0.00:z 0.08 + 0.052
0.01 — 0.02z 0.09 — 0.122
0.84 — 0.38: 0.84 + 0.01z

o The pole positions of both N(1535) and N(1650) are consistent with

the PDG value.

Particle Data Group.

@ i

| N(1535) 1/2~ | IUP) = 337

Breit-Wigner mass = 1525 to 1545 (~ 1535) M
Breit-Wigner full width = 125 to 175 (= 150) M
Re(pole position) = 1490 to 1530 (= 1510) Me)

— 2Ilm(pole position) = 90 to 250 (= 170) MeV

| N(1650) 1/2- | IUP) = 3G37)

Breit-Wigner mass = 1645 to 1670 (= 1655) MeV
Breit-Wigner full width = 110 to 170 (= 140) MeV
Re(pole position) = 1640 to 1670 (~ 1655) MeV
— 2Ilm(pole position) = 100 to 170 (= 135) MeV

HI")."I
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= Fitted to the NV amp

3.

Applications

++ Compositeness for N(1535) and N(1650) ++

0.8

0.6

0.4

bll

0.2

0

-0.2 &=

litude W1 08 ( S11).

T

Fit, Real part —

Fit. Imaginary part sees
W1 08, Real part ®
W1 08, Imaginary part O

==> %2/ Ndaot.=94.6 / 167 = 0.6.
Sed, o Chiral unitary approach

@
gﬁ' reproduces the amplitude
s of PWA very well.

N (1535) N(1650)
J/3pole MeV]  1496.4 — 58.7i  1660.7 — 70.0i
—0.02+0.03i  0.00+ 0.04:
0.04 +0.37:  0.00+ 0.014
I D ¢ %) 0.14 +0.00i  0.08+ 0.05:
T i a 1e ae | Xks 0.01 —0.02;  0.09—0.12i
w [GeV] Z 0.84 —0.38i  0.84+ 0.014

o For both N* resonances, the elementariness Z is dominant.

--> N(1535) and N(1650) have large components originating from
contributions other than oV, nN, KA, and KX. The missing
channels should be encoded in the energy dep. of V and LEC.

@

JA:=
*H.mtl
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3. Applications

++ Compositeness for A(1232) ++
= A(1232) --- The excellent successes of the quark model strongly

indicate that A(1232) is described as genuine ggq states very well

= However, effect of the meson-nucleon cloud for A(1232) seems
to be “large”.

TE—— o The magnetic M1 form factor of
full v N --> A(1232) shows that
3 MAMI the meson cloud effect brings

B JLAB/CLAS

Cu/3 Go

i ~ 30 % of the form factor at 0* = 0.

A JLAB/HALL C

Sato and Lee, J. Phys. G36 (2009) 073001.

SNo=N

:[fc»»' | -

0.6 -

0.4 |-

0.2 Lo

Q* (GeV?)
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3. Applications

++ Compositeness for A(1232) ++
= A(1232) --- The excellent successes of the quark model strongly

indicate that A(1232) is described as genuine ggq states very well.

= However, effect of the meson-nucleon cloud for A(1232) seems

to be “large”.
- -1 o The "’V compositeness for A(1232) is

evaluated In a very simple model.
Aceti et al., Eur. Phys. J. AS0 (2014) 57.

- aoj ~2 [dG”(S)
40 l _gA

o

120}

= (0.62 — 40.41),
V/3=+/50

dy/s

| ' | o Large real part of the 1NV compositeness,
T e e w s but Imaginary part is non-negligible.

--- The result implies large =NV contribution
o, e.g., the transition form factor.

= However, this result was obtained in a very simple model.
--> Need a more refined model !
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3. Applications

++ Compositeness for A(1232) ++
= We construct our own nV elastlc scatterlng amplltude in the chlral

unitary approach.

T,I —V,IL+V,ILGLT,IL—

R\

—»—@—»——»—D—»——»—D—»—@—»—

l/V' —GL

o V:

.
.
.
\

4 -
. ® -
v s «*
{ N v’
S
. ,"s

*— ——— ——————

--- We include an epr|C|t A( 1232) pole term.

o G: Subtraction constant is fixed in the natural renormalization
scheme, which can exclude explicit pole contributions in G.

GjL(s = M%) =0

Hyodo, Jido and Hosaka, Phys. Rev. C78 (2008) 025203.

--- This makes the physical N(940) mass in the full Amp. unchanged.

--- In addition, we constrain G so as to exclude dGL
unphyS|caI bare-state contributions to N(940):

(®)| ‘H.l‘) 1

(s—MN)<O
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3. Applications

++ Compositeness for A(1232) ++
= We construct our own nV elastlc scatterlng amplltude in the chlral

unitary approach. '« N
1 —»@—»— e —»—D_>_@+

+ + + +
T =V i+ V' GLT', =

l/V':ItL — Gy

o We have model parameters of: LECs, bare A mass and coupling
constant to NV, and a subtraction const.
--> Fitted to six NV scattering amplitudes ( S11, S31, P11, P31, P13, P33 )
obtained as a PWA solution “WI 08” up to Vs = 1.35 GeV.
Workman et al., Phys. Rev. D86 (2012) 014012.
o The P11 and P33 amplitude contain poles corresponding to
the physical N(940) and A(1232), respectively:
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3. Applications

++ Compositeness from fitted amplitude ++
= Fitted to the vV amplitude WI 08 ( S1u1, S31, P11, P31, P13, P33 ).

1.2

==> %2/ Na.otr.=1240 /809 = 1.5.

CO';S"T" ned _ Imaginary part

'[wios . o Chiral unitary approach
0.8 | reproduces the amplitude
0.6
y of PWA well.

N o2 Constrained A(1232) N (940)

0 O o . o oo eeeeeee 11 /Spole (MeV]| 1206.9 —49.6:  938.9
0.2 Real part XN 0.87 + 0.357 0.00
oal Z 0.13 — 0.353 1.00
-0.6 L— . :

1.1 1.15 1.2 1.25 1.3 1.35
w [GeV]

o For A(1232), its pole position is very similar to the PDG value.

) Re(pole position) = 1209 to 1211 (=~ 1210) MeV
o The N COmpOS|teneSS X takes —2Im(pole position) = 98 to 102 (=~ 100) MeV

large real part ! But non-negligible imaginary part as well.
--> Our refined model reconfirms the result in the previous study.
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3. Applications

++ Compositeness from fitted amplitude ++
= Fitted to the vV amplitude WI 08 ( S1u1, S31, P11, P31, P13, P33 ).

1.2
1

0.8

0.6

. 04}

o 0.2
0
-0.2

0.4 |

-0.6

Constrained  p—
- W1 08 ®

==> %2/ Na.otr.=1240 /809 = 1.5.

o Chiral unitary approach
reproduces the amplitude
of PWA well.

Imaginary part

Constrained A(1232) N (940)

Real part

.......................... 1 /Spole [MeV] 1206.9 —49.6;  938.9
Xﬂ'N

0.87 + 0.357 0.00
Z 0.13 — 0.352 1.00

1.1 1.15

1.2 1.25 1.3 1.35
w [GeV]

o For N(940), Xv IS non-negative and zero.
--> Implies that N(940) is not described by the 1N molecular picture.

@

HI]‘)"l
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4. Conclusion
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4. Conclusion

= Hadronic molecules are unique, because they are composed of

color singlet states, which can be observed as asymptotic states.

o We can use quantum mechanics in a usual manner.

o In particular, we can investigate their structure of
composites by the two-body wave functions and
their norms = compositeness.

"

= The two-body wave functions can be extracted from the hadron-
hadron scattering amplitude, although they are model dependent.

v(q')v(q)

1@, 4 B) = @B ~ L0 1@ = @VI¥) = (B

— E(9)1¥(q)

--- The residue at the pole position contains information on
the two-body wave function, which is automatically nhormalized.

2
/ (dsq [ E 17(_61)E(q)] =1 <--If the state is purely molecule !
pole

27)3

--> Comparing the norm = compositeness with unity, we may able
to conclude the structure of hadronic molecule candidates.
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4. Conclusion

= We apply this scheme to A(1405), N(1535), N(1650), and A(1232)
in an effective model, chiral unitary approach,
with a separable interaction of LO + NLO (+ bare A) taken from
chiral perturbation theory.

4 LY i T N g
- » - o > o—» s - e - —
| 4 T v
N %
\V/
L V. A N S W L

—»—@—»— - - > » @—»—

- : I

--- In this model, we find that ... @2@

o A(1405) (higher pole) is indeed a KN molecule.

o N(1535) and N(1650) have small &N, nN, KA and KX components.
o A(1232) has a non-negligible 71V component.
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Thank you very much
for your kind attention !
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