Multiquark systems by a quark model

Sachiko Takeuchi (Japan College of Social Work) work with K. Shimizu (Sophia U), M. Oka (TITech), M. Takizawa (Showa Pharmaceutical U)

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

Contents

- 1. Recent LHCb experiments show us that there is two resonances in the N-J/ ψ channel, whose spin and parity are most probably (3/2- 5/2+), or maybe (3/2+ 5/2-), (5/2+ 3/2-).
 - In this talk, we will show that there is a state which gains a large attraction from the color-magnetic interaction in the uudcc I(JP)=1/2(3/2-) channel.
 - This state may be seen as <u>a resonance in the N-J/ ψ channel.</u>
- 2. We also found that there is an equally or more attractive state in the channel with strangeness, $udsc\bar{c}$, I(JP)=O(1/2-).
 - We would like to discuss the possibility to find it as <u>a</u> resonance in the Λ -J/ ψ or Λ - η c channels.
- We also would like to show a brief summary on the possibility that the 1++ cc-component of the X(3872) is seen in the X (3872) radiative decay in the LHCb experiments.

Today's menu No.1

qqqcc pentaquarks are investigated by a simple quark cluster model

- The model can give the single baryon and meson spectra
- $c\bar{c}_8$ -qqq₈ state can be attractive.
- There may be a $\sum_{c=1}^{\infty} \overline{D}(\frac{3}{2}^{-})$ bound state,
- which mixes with $\Lambda_c \overline{D}^*$ strongly, but with NJ/ψ weakly.
- Scattering calc suggests rich spectrum.

 hamiltonian $H = K + V^{\text{Conf}} + V^{\text{Coul}} + V^{\text{CEI}} + V^{\text{CMI}}$ orbital configuration: (0s)ⁿ $\phi(r, b)$: gaussian with size parameter b should be different from each other, but very complicated. So, as a first step, fixed b for all flavors

Quark Model (simple version)

hamiltonian

 $H = K + V^{\rm Conf} + V^{\rm Coul} + V^{\rm CEI} + V^{\rm CMI}$

$$\begin{split} V^{\text{Conf}} &= -a_c \sum (\lambda_i \cdot \lambda_j) r_{ij} & \xi_{qc} \neq \xi_{q\overline{c}} \\ V^{\text{Coul}} &= -\sum \frac{(\lambda_i \cdot \lambda_j)}{4} \frac{\alpha_s}{r_{ij}} \underset{\text{Mqqq}}{\text{Mqqq}}, \\ V^{\text{CEI}} &= \sum (\lambda_i \cdot \lambda_j) \alpha_s \zeta_{qq'} \delta^3(\vec{r}_{ij}) \\ V^{\text{CMI}} &= -\sum (\lambda_i \cdot \lambda_j) (\sigma_i \cdot \sigma_j) \alpha_s \xi_{qq'} \delta^3(\vec{r}_{ij}) \underset{\text{hfs}}{\text{hfs}} \end{split}$$

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

Baryons	Baryon	CMI	av mass	model A	model B
	Ν	-8	939	937.04	937.04
	Λ	-8	1116	1113.80	1113.80
	Σ	$\frac{8}{3} - \frac{32}{3}\xi_s$	1193	1193.78	1193.78
	Σ^*	$\frac{8}{3} + \frac{16}{3}\xi_s$	1385	1385.19	1385.19
	Λ_c	-8	2286	2288.34	2288.34
	Σ_c	$\frac{8}{3} - \frac{32}{3}\xi_c$	2454	2452.91	2425.23
	Σ_c^*	$\frac{8}{3} + \frac{16}{3}\xi_c$	2518	2517.44	2531.28
	Ξ_c	$-8\xi_s$	2469	2486.10	2488.79
	Ξ_c'	$-\frac{8}{3}(2\xi_c + 2\xi_{cs} - \xi_s)$	2577	2560.09	2545.11
	Ξ_c - Ξ_c'	$-\frac{8\sqrt{3}}{3}(\xi_c - \xi_{cs})$			
	Ξ_c^*	$\frac{8}{3}(\xi_s + \xi_c + \xi_{cs})$	2646	2645.90	2652.05

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

Mesons

Meson	CMI	av mass	model A	model B
η_c	$-16\xi_{cc}$	2984	2983.60	2983.60
$J\!/\!\psi$	$\frac{16}{3}\xi_{cc}$	3097	3096.92	3096.92
\overline{D}	$-16\xi_c$	1867	1908.10	1866.58
\overline{D}^*	$\frac{16}{3}\xi_c$	2009	1994.14	2007.98
D_s	$-16\xi_{cs}$	1968	1964.32	1968.94
D_s^*	$\frac{16}{3}\xi_{cs}$	2112	2114.28	2112.74

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

Pentaquarks

P_c Pentaquark

 $\blacksquare P_{\rm c} \rightarrow {\rm J}/\psi + p \qquad \qquad {\rm July 13, 2015}$

two penta-quark states with (hidden) ccbar

 $P_{\rm c}(4380) (3/2^+?)$ $P_{\rm c}(4450) (5/2^-?)$

P_c Pentaquark

SU(3) quark model c-c^{bar} spin 0 or 1 $\eta_c J/\psi$ color 1 or 8 $\eta_c^8 \psi^8$

```
qqq (uud, . . )

color 1 or 8

SU(6): even L \rightarrow 56 [3] or 70 [21]

odd L \rightarrow 70 [21] or 56[3]+70[21]+20[1<sup>3</sup>]
```

This can be **B**₈ spectroscopy.

(Ref: S.G. Yuan, et al., EPJ A48 (2012) 61, ArXiv:1201.0807)

Makoto Oka@Tokyo Tech

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

hamiltonian

 $H = K + V^{\text{Conf}} + V^{\text{Coul}} + V^{\text{CEI}} + V^{\text{CMI}}$

- configuration
 - $\phi(r, b)$: gaussian with size parameter b

fixed b for all flavors

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

hamiltonian

 $H = K + V^{\text{Conf}} + V^{\text{Coul}} + V^{\text{CEI}} + V^{\text{CMI}}$

configuration

hamiltonian

 $H = K + V^{\rm Conf} + V^{\rm Coul} + V^{\rm CEI} + V^{\rm CMI}$

configuration

flavor sym. **Spin dependence** S = 1/2S = 3/2**#** color 1 cc^{bar} S 56 = (8, 1/2) + (10, 3/2)Ŏ color-1 (8,1/2) $\Delta = -8$ cc^{bar} uud (udd) = J/ ψ +p 0 0 0 0 0 0 0 0 (10,1/2) $\Delta = 8$ 0 0 0 0 0 0 0 0 **#** color 8 cc^{bar} 0 70 = (1, 1/2) + (8, 1/2) + (8, 3/2) + (10, 1/2)(1,1/2) $\Delta = -14 \quad \operatorname{cc}^{\operatorname{bar}} \operatorname{uds} = \psi_8 + \Lambda_8$ 0 0 0 0 CO CO 0 0 0 0 0 0 $(8,1/2) \qquad \Delta = 0$ 0 0 0 0 8 $(8,3/2) \qquad \Delta = 4$ color 0 0 0 0 (10,1/2) $\Delta = 10$ 0 0 0

Makoto Oka@Tokyo Tech

19 Feb. 2016 Mini-workshop on exotic hadrons from LHCb@lokai

0

0

0

qqqcc I(JP)=1/2(1/2-)

- 7 BM channels:
 - $N\eta_c, NJ/\psi, \Lambda_c\overline{D}, \Lambda_c\overline{D}^*, \Sigma_c\overline{D}, \Sigma_c\overline{D}^*, \Sigma_c\overline{D}^*$
- 2 forbidden states for totally symmetric in the orbital space:

$$\begin{split} |Q_1\rangle &= \sqrt{\frac{1}{32}} \Big(\sqrt{8} |N\eta_c\rangle &+ \sqrt{3} |\Lambda_c \overline{D}\rangle + \sqrt{9} |\Lambda_c \overline{D}^*\rangle + \sqrt{3} |\Sigma_c \overline{D}\rangle - \sqrt{1} |\Sigma_c \overline{D}^*\rangle + \sqrt{8} |\Sigma_c^* \overline{D}^*\rangle \Big) \\ |Q_2\rangle &= \sqrt{\frac{1}{96}} \Big(\sqrt{24} |NJ/\psi\rangle + \sqrt{27} |\Lambda_c \overline{D}\rangle - \sqrt{9} |\Lambda_c \overline{D}^*\rangle - \sqrt{3} |\Sigma_c \overline{D}\rangle + \sqrt{25} |\Sigma_c \overline{D}^*\rangle + \sqrt{8} |\Sigma_c^* \overline{D}^*\rangle \Big). \end{split}$$

- 2 color-singlet $c\bar{c}$ states: $N\eta_c$, NJ/ψ
- 3 color-octet cc states
 - 2 qqq spin 1/2 and 1 qqq spin 3/2 states

qqqcc̄ l(JP)=1/2(1/2-)

state	$\langle \mathrm{cmi}_4 \rangle$	$\langle \mathrm{cmi}_3 \rangle$	c-1	$S-\frac{1}{2}$	$ N\eta_c\rangle$	$ NJ\!/\!\psi angle$	$ \Lambda_c \overline{D}\rangle$	$ \Lambda_c \overline{D}^* \rangle$	$ \Sigma_c \overline{D}\rangle$	$ \Sigma_c \overline{D}^*\rangle$	$ \Sigma_c^*\overline{D}^*\rangle$
SU4 $ A\rangle$	-36.2	-3.6	0.50	0.66	-0.611	0.048	0.249	-0.020	0.748	-0.059	0
B angle	-18.7	-2.7	0.33	0.67	-0.433	-0.250	0.530	0.306	-0.530	-0.306	0
$ C\rangle$	-6.5	-4.4	0.50	0.84	-0.048	-0.611	0.020	0.249	0.059	0.748	0
D angle	-5.8	-4.1	0.39	0.94	0.427	-0.327	0.523	-0.400	0.174	-0.133	-0.477
$ E\rangle$	11.1	-3.2	0.28	0.89	-0.069	-0.453	-0.085	-0.555	-0.028	-0.185	0.662
SU3 $ 1_A\rangle$	-24	-8	1	1	0.866	0	-0.177	-0.306	-0.177	0.102	-0.289
$ 1_B\rangle$	$-\frac{8}{3}$	-8	1	1	0	0.866	-0.306	0.177	0.102	-0.295	-0.167
$ 8_A\rangle$	$-\frac{8}{3}$	-2	0	1	0	0	0	0.707	-0.408	0.471	-0.333
$ 8_B angle$	-8	-2	0	1	0	0	0.707	0	0	-0.408	-0.577
$ 8_C angle$	$-\frac{56}{3}$	2	0	0	0	0	0	0	0.816	0.471	-0.333

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

qqqcc I(JP)=1/2(1/2-) (0s)⁵ calc

state	energy (Me	V)	c-1	$S-\frac{1}{2}$	$ N\eta_c\rangle$	$ NJ\!/\!\psi angle$	$ \Lambda_c \overline{D} angle$	$ \Lambda_c \overline{D}^* \rangle$	$ \Sigma_c \overline{D}\rangle$	$ \Sigma_c \overline{D}^*\rangle$	$\left \Sigma_{c}^{*}\overline{D}^{*}\right\rangle$
Paramete	r set A										
$ 1_a angle angle$	3915		0.99	0.99	0.860	-0.002	-0.223	-0.271	-0.260	0.115	-0.236
$ 1_b\rangle\!\rangle$	4030		0.99	1.00	0.003	0.862	-0.339	0.116	0.145	-0.307	-0.115
$ 8_a angle angle$	4361		0.01	0.56	0.089	-0.048	0.163	-0.536	0.805	-0.085	-0.143
$ 8_b\rangle\!\rangle$	4383		0.00	0.86	0.031	0.039	0.633	-0.036	-0.289	-0.586	-0.411
$ 8_c\rangle\!\rangle$	4463		0.01	0.59	-0.032	-0.057	-0.179	-0.499	-0.236	-0.500	0.639
Threshold	ls (MeV)				3921	4034	4196	4282	4361	4447	4512
SU3 $ 1_A\rangle$	-24	-8	1	1	0.866	0	-0.177	-0.306	-0.177	0.102	-0.289
$ 1_B\rangle$	$-\frac{8}{3}$	-8	1	1	0	0.866	-0.306	0.177	0.102	-0.295	-0.167
$ 8_A\rangle$	$-\frac{8}{3}$	-2	0	1	0	0	0	0.707	-0.408	0.471	-0.333
$ 8_B\rangle$	-8	-2	0	1	0	0	0.707	0	0	-0.408	-0.577
$ 8_C angle$	$-rac{56}{3}$	2	0	0	0	0	0	0	0.816	0.471	-0.333

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

qqqcc I(JP)=1/2(3/2-)

- 5 BM channels:
 - $NJ/\psi, \Lambda_c \overline{D}^*, \Sigma_c \overline{D}^*, \Sigma_c^* \overline{D}, \Sigma_c^* \overline{D}^*$
- 1 forbidden states for totally symmetric in the orbital space:

 $|Q\rangle = \sqrt{\frac{1}{24}} \left(\sqrt{6} |NJ/\psi\rangle + \sqrt{9} |\Lambda_c \overline{D}^*\rangle + \sqrt{1} |\Sigma_c \overline{D}^*\rangle - \sqrt{3} |\Sigma_c^* \overline{D}\rangle + \sqrt{5} |\Sigma_c^* \overline{D}^*\rangle \right)$

- 1 color-singlet $c\bar{c}$ states: NJ/ψ
- 3 color-octet cc states
 - 1 qqq spin 1/2 and 2 qqq spin 3/2 states

qqqcc̄ I(JP)=1/2(3/2-)

state	$\langle \mathrm{cmi}_4 \rangle$	$\langle cmi_3 \rangle$	c-1	$S-\frac{1}{2}$	$ NJ\!/\!\psi angle$	$ \Lambda_c \overline{D}^*\rangle$	$ \Sigma_c \overline{D}^*\rangle$	$ \Sigma_c^*\overline{D}\rangle$	$ \Sigma_c^*\overline{D}^*\rangle$
SU4 $ A\rangle$	-12.0	-0.1	0.079	0.395	 0.243	0.298	0.099	0.918	0
B angle	-6.7	-3.0	0.500	0.500	-0.612	0.250	0.750	0	0
$ C\rangle$	1.3	-2.7	0.333	0.667	-0.500	0.612	-0.612	0	0
D angle	13.3	-0.3	0.088	0.439	 -0.256	-0.314	-0.105	0.181	0.890
SU3 $ 1_A\rangle$	$-\frac{8}{3}$	-8	1	1	 0.866	-0.354	-0.118	0.204	-0.264
$ 8_A\rangle$	$\frac{4}{3}$	-2	0	1	0	0.707	-0.236	0.408	-0.527
$ 8_B\rangle$	$-\frac{8}{3}$	2	0	0	0	0	0.943	0.204	-0.264
$ 8_C angle$	0	2	0	0	0	0	0	0.791	0.612

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

qqqcc I(JP)=1/2(3/2-) (0s)⁵ calc $|\Sigma_c^* \overline{D}^* \rangle$ $S-\frac{1}{2}$ $|\Lambda_c \overline{D}^*\rangle$ $|\Sigma_c \overline{D}^*\rangle$ $|\Sigma_c^*\overline{D}\rangle$ energy (MeV) c-1 $|NJ/\psi\rangle$ state parameter set A $|1_a\rangle\rangle$ 0.865 -0.3504032 0.997 0.997 -0.1510.234 -0.229 $|8_a\rangle\rangle$ 4399 0.000 0.7450.617 0.759-0.018-0.052-0.1984461 0.912 0.298 $|8_b\rangle\rangle$ 0.000 0.115 0.016 -0.2460.135

-0.043

-0.247

-0.317

0.394

0.826

Th	resholds (N	MeV)					4034	4282	4447	4426	4512
	state	$\langle {\rm cmi}_4 \rangle$	$\langle \mathrm{cmi}_3 \rangle$	c-1	$S-\frac{1}{2}$		$ NJ\!/\!\psi angle$	$ \Lambda_c \overline{D}^* angle$	$ \Sigma_c \overline{D}^* \rangle$	$ \Sigma_c^*\overline{D}\rangle$	$ \Sigma_c^*\overline{D}^*\rangle$
	SU4 $ A\rangle$	-12.0	-0.1	0.079	0.395		0.243	0.298	0.099	0.918	0
	B angle	-6.7	-3.0	0.500	0.500		-0.612	0.250	0.750	0	0
	C angle	1.3	-2.7	0.333	0.667		-0.500	0.612	-0.612	0	0
	D angle	13.3	-0.3	0.088	0.439		-0.256	-0.314	-0.105	0.181	0.890
	SU3 $ 1_A\rangle$	$-\frac{8}{3}$	-8	1	1		0.866	-0.354	-0.118	0.204	-0.264
	$ 8_A angle$	$\frac{4}{3}$	-2	0	1		0	0.707	-0.236	0.408	-0.527
	$ 8_B\rangle$	$-\frac{8}{3}$	2	0	0		0	0	0.943	0.204	-0.264
	$ 8_C\rangle$	0	2	0	0		0	0	0	0.791	0.612
	TANKAR AND ADDRESS OF A	Mini-wo	orkshop a	on exoti	c hadro	ns	from LHC	Cb@Tokai	19 Feb	0.2016	

2016年 2月 29日 月曜日

 $|8_c\rangle\rangle$

4513

0.003

0.143

Quark Cluster Model

• hamiltonian $H = K + V^{\text{Conf}} + V^{\text{Coul}} + V^{\text{CEI}} + V^{\text{CMI}}$ $V^{\text{Conf}} = -a_c \sum (\lambda_i \cdot \lambda_j) r_{ij}$ $\xi_{qc} \neq \xi_{a\overline{c}}$ b $V^{\text{Coul}} = -\sum \frac{(\lambda_i \cdot \lambda_j)}{4} \frac{\alpha_s}{r_{ij}}$ rii $V^{\rm CEI} = \sum (\lambda_i \cdot \lambda_j) \alpha_s \zeta_{qq'} \delta^3(\vec{r}_{ij})$ $V^{\rm CMI} = -\sum (\lambda_i \cdot \lambda_j) (\sigma_i \cdot \sigma_j) \alpha_s \xi_{qq'} \delta^3(\vec{r}_{ij})$

Mini-workshop on exotic hadrons from LHCb@Tokai 19 Feb. 2016

Quark Cluster Model

parameter set

Takeuchi Shimzu PRC76 035204 modified

- $m_u = 313$ MeV, $m_c = 1548$ MeV
- $\alpha_s = 0.878$, $a_c = 163.33$ MeV/fm
- b = 0.49 fm (fixed for all flavors)
- No instanton induced interaction
- Kin replaced by the real masses $K_R(R, R) \rightarrow K_R(R, R) \times \frac{6m_q}{5} \frac{1}{\mu}$

Quark Cluster Model

- configuration
 - 2 clusters (baryon-meson) whose orbital wave function is the gaussian.
 - The size parameter for all flavors are the same. (J/ ψ needs correction)

Potential

- Potential calculated by $\frac{\langle H-K\rangle}{\langle 1\rangle}_{GCM}$ [M
 - put the two clusters r[fm] apart from each other,
 - obtain the energy: H(r,r)
 - V = H(r,r)-H(∞, ∞)
 w/o Kinetic term
- Kinetic energy: $\frac{3}{4\mu b^2}$ ~ 30 MeV (b=1fm)

Σc*D is weakly bound? or resonance?

A bound state in 3/2-?

- Single channel calculation:
 - $\Sigma_c^* D$ YES BE = 0.7 MeV (No J/ ψ correction)
- 3 channel calculation:

 $\Sigma_c^* D - \Sigma_c \overline{D}^* - \Sigma_c^* \overline{D}^*$

YES BE = 5.8 MeV (No J/ ψ correction)

 $\Sigma_c^*\overline{D}\left(\frac{3}{2}^-\right)$ bound state?

A bound state in 3/2-?

- Single channel calculation:
- $\Sigma_c^* D$ YES BE ~ 0 MeV (w/ J/ ψ correction)
 3 channel calculation: $\Sigma_c^* \overline{D} \Sigma_c \overline{D}^* \Sigma_c^* \overline{D}^*$ YES BE = 9.8 MeV (w/ J/ ψ correction)

It seems the bound state survives the correction.

Phase shifts Pre

Σc*D single channel calculations

other quark models

- Quark model (OGE + OBE, Chiral)
 - Pc(4380) is a bound state of ΣcD*? (similar to our results with a bound state approach)
 [H Huang, C Deng J Ping F Wang,arXiv:1510.04648]
 [G.Yang J Ping arXiv:151109053]
- Diquark-diquark-qbar
 - K-J/ψ for Pc(4380)? Strangeness is important.

[V.V. Anisovich etal arXiv:1509.04898]

Review

[HX Chen W Chen X Liu S-L Zhu,arXiv:1601.02092]

Today's menu No.2

qqscc pentaquarks are investigated by a simple quark model

- The model can give the single baryon and meson spectra
- cc
 ₈-qqq₈ state can be attractive (flavor singlet state!).
- There may be a $\Lambda_c D_s$ - $\Xi_c \overline{D}$ bound state,
- which mixes with $\Lambda\eta c$, $\Lambda J/\psi$ weakly.

qqscc I(JP)=0(1/2-)

• 9 BM channels:

 $\Lambda \eta_c, \Lambda J/\psi, \Lambda_c D_s, \Lambda_c D_s^*, \Xi_c \overline{D}, \Xi_c \overline{D}^*, \Xi_c \overline{D}, \Xi_c \overline{D}^*, \Xi_c \overline{D}^*, \Xi_c \overline{D}^*$

 2 forbidden states for totally symmetric in the orbital space:

 $|Q_1\rangle = \sqrt{\frac{1}{32}} \left(\sqrt{8} |\Lambda\eta_c\rangle + \sqrt{2} |\Lambda_c D_s\rangle + \sqrt{6} |\Lambda_c D_s^*\rangle + \sqrt{1} |\Xi_c \overline{D}\rangle + \sqrt{3} |\Xi_c \overline{D}^*\rangle + \sqrt{3} |\Xi_c' \overline{D}\rangle - \sqrt{1} |\Xi_c' \overline{D}^*\rangle + \sqrt{8} |\Xi_c^* \overline{D}^*\rangle \right)$ (53)

 $|Q_2\rangle = \sqrt{\frac{1}{96}} \left(-\sqrt{24} |\Lambda J/\psi\rangle + \sqrt{18} |\Lambda_c D_s\rangle - \sqrt{6} |\Lambda_c D_s^*\rangle + \sqrt{9} |\Xi_c \overline{D}\rangle - \sqrt{3} |\Xi_c \overline{D}^*\rangle - \sqrt{3} |\Xi_c' \overline{D}\rangle + \sqrt{25} |\Xi_c' \overline{D}^*\rangle + \sqrt{8} |\Xi_c^* \overline{D}^*\rangle - \sqrt{3} |\Xi_c \overline{D}^*\rangle + \sqrt{3} |\Xi_c' \overline{D}^*\rangle$

- 2 color-singlet $c\bar{c}$ states: $\Lambda \eta_c$, $\Lambda J/\psi$
- 5 color-octet cc states
 - 4 qqq spin 1/2 and 1 qqq spin 3/2 states
 - 2 flavor singlet states

qqscc̄ l(JP)=0(1/2-)

	state	$\langle \mathrm{cmi} \rangle$	c-1	$S-\frac{1}{2}$	f-1	$ \Lambda\eta_c angle$	$ \Lambda J\!/\!\psi angle$	$ \Lambda_c D_s \rangle$	$ \Lambda_c D_s^* $	$ \Xi_c\overline{D} angle$	$\Xi_c \overline{D}^* \rangle$	$ \Xi_c^\prime \overline{D} \rangle$	$ \Xi_c^{\prime}\overline{D}^*\rangle$	$ \Xi_c^*\overline{D}^*\rangle$
SU	$4 A\rangle$	-36.2	0	1	1	0	0	-0.576	0.045	0.814	-0.064	0	0	0
	B angle	-6.5	0	1	1	0	0	-0.045	-0.576	0.064	0.814	0	0	0
	$ C\rangle$	-36.2	0.500	0.660	0	-0.611	0.048	0.204	-0.016	0.144	-0.011	0.748	-0.059	0
	$ D\rangle$	-6.5	0.500	0.840	0	-0.048	-0.611	0.016	0.204	0.011	0.144	0.059	0.748	0
	$ E\rangle$	-18.7	0.333	0.667	0	0.433	0.250	-0.433	-0.250	-0.306	-0.177	0.530	0.306	0
	$ F\rangle$	-5.8	0.386	0.943	0	-0.427	0.327	-0.427	0.327	-0.302	0.231	-0.174	0.133	0.477
	$ G\rangle$	11.1	0.281	0.890	0	-0.069	-0.453	-0.069	-0.453	-0.049	-0.321	-0.028	-0.185	0.662
SU	$8 1_A\rangle$	-8	1	1	0	0.866	0	-0.144	-0.250	-0.102	-0.177	-0.177	0.102	-0.289
	$ 1_B\rangle$	-8	1	1	0	0	0.866	-0.250	0.144	-0.177	0.102	0.102	-0.295	-0.167
	$ 8_A angle$	-14	0	1	1	0	0	-0.577	0	0.816	0	0	0	0
	$ 8_B\rangle$	-14	0	1	1	0	0	0	-0.577	0	0.816	0	0	0
	$ 8_C\rangle$	-2	0	1	0	0	0	0	0.577	0	0.408	-0.408	0.471	-0.333
	$ 8_D\rangle$	-2	0	1	0	0	0	0.577	0	0.408	0	0	-0.408	-0.577
	$ 8_E\rangle$	2	0	0	0	0	0	0	0	0	0	0.816	0.471	-0.333
		N	1ini-v	vorks	hop	on exoti	c hadro	ons froi	m LHCk	o@Toka	ai 19	Feb. 20)16	

qqscc̄ l(JP)=0(1/2-)

	state	energy	c-1	$S-\frac{1}{2}$	f-1	$ \Lambda\eta_c angle$	$ \Lambda J\!/\!\psi angle$	$ \Lambda_c D_s angle$	$ \Lambda_c D_s^*\rangle$	$ \Xi_c\overline{D}\rangle$	$ \Xi_c \overline{D}^*\rangle$	$ \Xi_c^{\prime}\overline{D} angle$	$ \Xi_c'\overline{D}^*\rangle$	$ \Xi_c^*\overline{D}^*\rangle$
hree	sholds	5				4097.40	4210.72	4252.66	4402.63	4394.21	4480.24	4468.19	4554.22	4640.04
А	$ 1_a\rangle\!\rangle$	4083.52	0.946	0.992	0.020	0.842	0.003	-0.299	-0.173	-0.046	-0.170	-0.279	0.151	-0.198
	$ 1_b\rangle\!\rangle$	4197.95	0.901	0.999	0.061	-0.033	0.821	-0.447	0.025	-0.027	0.106	0.183	-0.279	-0.031
	$ 8_a\rangle$	4240.75	0.091	1.000	0.844	-0.149	-0.215	-0.579	0.120	0.708	-0.052	-0.033	0.191	0.204
	$ 8_b\rangle\!\rangle$	4390.37	0.024	0.996	0.852	-0.053	0.125	0.021	0.762	-0.141	-0.581	-0.165	0.102	-0.076
	$ 8_c\rangle\!\rangle$	4473.84	0.012	0.459	0.048	0.037	-0.089	-0.189	-0.152	-0.295	-0.322	0.744	0.397	0.176
	$ 8_d\rangle\!\rangle$	4490.96	0.016	0.940	0.127	0.110	0.003	0.287	-0.141	0.495	-0.424	0.363	-0.401	-0.411
	$ 8_e\rangle\!\rangle$	4594.79	0.009	0.614	0.049	-0.031	-0.078	-0.086	-0.286	-0.141	-0.460	-0.225	-0.492	0.616
SU3	$ 1_A\rangle$	-8	1	1	0	0.866	0	-0.144	-0.250	-0.102	-0.177	-0.177	0.102	-0.289
	$ 1_B\rangle$	-8	1	1	0	0	0.866	-0.250	0.144	-0.177	0.102	0.102	-0.295	-0.167
	$ 8_A\rangle$	-14	0	1	1	0	0	-0.577	0	0.816	0	0	0	0
	$ 8_B\rangle$	-14	0	1	1	0	0	0	-0.577	0	0.816	0	0	0
	$ 8_C\rangle$	-2	0	1	0	0	0	0	0.577	0	0.408	-0.408	0.471	-0.333
	$ 8_D\rangle$	-2	0	1	0	0	0	0.577	0	0.408	0	0	-0.408	-0.577
	$ 8_E\rangle$	2	0	0	0	0	0	0	0	0	0	0.816	0.471	-0.333
		Ν	/ini_v	Norks	shon	on exot	ic hadr	ons fro	mIHC	h@Tok	ai 19	Feb 2	016	

A bound state in JP=1/2-?

- An attractive state in the $\Lambda_c D_s$ - \mathfrak{L}_{a} - $\mathfrak{L$
 - There, uds is in the color octet, spin 1/2, flavor singlet. CMI is very attractive in the SU (3)_f limit as well as in the SU(4)_f limit.
 - can be a resonance in the $\Lambda J/\psi?$

I'm working on the QCM calc...

Summary of cc Pentaquarks

- It seems there is a bound state of $\sum_{c}^{*}\overline{D}$ I(JP)=1/2(3/2-), which can be seen in the $\Lambda_{c}\overline{D}^{*}$
- There is probably a bound state of I(JP)=0(1/2-) $\Lambda_c D_s$ - $\Xi_c \overline{D}$
 - attraction due to the color-magnetic interaction
 - To include J/ψ, one needs to introduce the quark cluster with different b. (which is complicated)

Today's menu No.3

The 1⁺⁺ cc̄-component of the X(3872) may be seen in the X(3872) radiative decay?

- All the quark model predict that there is The $1++c\bar{c}(2P)$ state.
- But, the 1++ cc(2P) state is missing because the mass should be above the open charm threshold, DD*.
- Its pole may have been seen in the X(3872) γ decay spectrum by LHCb.
- It is because cc̄(2P) decays to ψ', but not to J/ψ (or only weekly).

X(3872) y-decay

 $B^+ \rightarrow X(3872) + K^+$

S.Takeuchi, M.Takizawa, and K.Shimizu, arXiv:1602.04297 [hep-ph]

LHCb's results: X(3872) \rightarrow J/ $\psi\gamma$

LHCb's results: X(3872) $\rightarrow \psi(2S)\gamma$

Our picture of X(3872)

Two-meson molecule with a cc̄ core:
▷cc̄(1P) - cc̄(2P) - D⁰D̄*⁰ - D⁺D⁻* - J/ψω - J/ψρ
DD̄*-J/ψ

 $\triangleright \omega$ and ρ have width.

 \triangleright J/ $\psi\omega$ and J/ $\psi\rho$ couple to $c\bar{c}$ only via DD* channels (OZI).

M. Takizawa and S. Takeuchi, Prog. Theor. Exp. Phys. 2013, 0903D01 S.Takeuchi, K.Shimizu, and M.Takizawa, Prog. Theor. Exp. Phys. 2014, 123D01

HYP2015 @ Sendai 8 Sep 2015

<u>.</u>

Radiative decay width: bound X(3872)

E1 transition of $\chi_{C1}(cc^{bar} core)$ to $J/\psi(\psi') \gamma$

$$\Gamma\left(X(3872) \to J/\psi(\psi') + \gamma\right) = \frac{4}{9} |Q_c|^2 \alpha \; \frac{\omega_\gamma^3 E_\psi}{M_X} \left| Z_{c\overline{c}} \langle c\overline{c} | r | \psi \rangle \right|^2$$

 $Z_{c\overline{c}}^2$: $c\overline{c}$ probability in X(3872).

 $\langle c\overline{c}|r|\psi\rangle$: the $c\overline{c}$ core in X(3872) to the final J/ψ or $\psi(2S)$ by E1. \triangleright harmonic oscillator

<χlrlψ>	J/ψ	ψ(2S)
χ _{c1} (2P)	0	√5/2 b
χ _{c1} (1Ρ)	√3/2 b	-b

HYP2015 @ Sendai 8 Sep 2015

Radiative decay width: bound X(3872)

E1 transiton of cc^{bar} core to $J/\psi(\psi') \gamma$

$$\Gamma\left(X(3872) \to J/\psi(\psi') + \gamma\right) = \frac{4}{9}|Q_c|^2 \alpha \; \frac{\omega_\gamma^3 E_\psi}{M_X} \left| Z_{c\overline{c}} \langle c\overline{c} | r | \psi \rangle \right|^2$$

 $Z_{c\overline{c}}^2$: $c\overline{c}$ probability in X(3872).

 $\langle c\overline{c}|r|\psi\rangle$: the $c\overline{c}$ core in X(3872) to the final $J\!/\psi$ or $\psi(2S)$ by E1.

 \triangleright To see the $\chi_{c1}(2P)$ pole, look into $\psi(2S)\gamma$

r	J/ψ	ψ(2S)	▷To explain the
χ _{c1} (2P)	0.04	0.52	(1P) should be
χ _{c1} (1P)	0.33	-0.41	included.

HYP2015 @ Sendai 8 Sep 2015

Radiative decay : Y spectrum

2016年 2月 29日 月曜日

X(3872), created from cc^{bar}(2P), decays into Ψγ :

$$\frac{\mathrm{d}W(c\overline{c} \to \psi\gamma)}{\mathrm{d}E} = -\frac{1}{\pi} \mathrm{Im} \ G_Q^{\gamma}$$

$$= \delta(E - (\Omega_{\psi} + \omega_{\gamma})) \sum_{\epsilon} \left| \langle \psi\gamma_{k\epsilon} | (V_{\gamma Q} \neq V_{\gamma P} G^{(P)} V_{PQ}) G_Q | c\overline{c} \rangle \right|^2$$

$$= \sum_{\epsilon} \left| \sum_{\beta} \langle \psi\gamma_{k\epsilon} | V_{\gamma Q} | c\overline{c}_{\beta} \rangle \langle c\overline{c}_{\beta} | G_Q | c\overline{c} \rangle \right|^2_{E=\Omega_{\psi} + \omega_{\gamma}}$$

$$\Gamma\left(\chi_{c1}(mP) \to \psi(nS) + \gamma\right)$$

phase is not phenomenologically determined.

HYP2015 @ Sendai 8 Sep 2015

Summary

2016年 2月 29日 月曜日

Radiative decay of X(3872) is calculated by using the model which includes $\triangleright \chi_{c1}(1P) - c\bar{c}(2P) - D^0 \overline{D}^{*0} - D^+ D^{-*} - J/\psi \omega - J/\psi \rho$ X(3872) feature can be explained by a twomeson molecule with the $c\bar{c}$ components. The structure of X(3872), such as $\chi_{c1}(2P)$ pole may be seen in the radiative decay spectrum. The ratio of the decay is sensitive to the $\chi_{c1}(1P) R_{\gamma} = \frac{B(X(3872) \rightarrow \psi(2S) \gamma)}{B(X(3872 \rightarrow J / \psi \gamma))}$ component.