EXOTIC HADRON Spectroscopy at LHCb

Marco Pappagallo

19 February, J-PARC, Japan

OUTLINE

Introduction

- Spectroscopy Techniques
- > Amplitude/Dalitz Analyses
- > Confirmation of the $Z(4430)^+$
 - Model Independent Analysis
 - > Amplitude Analysis of $B^0 \rightarrow \psi(2S) \pi^+ K^-$ Decay
- \geq Observation of two Pentaquarks P_c^+
 - ≻ Amplitude Analysis of $\Lambda_b \rightarrow J/\psi$ p K⁻ Decay

INTRODUCTION: "EXOTIC"

Tetra- and Penta-quarks conceived at the birth of the quark model

Volume 8, num	ber 3 PHYSICS LETTERS	1 February 1964
A S	CHEMATIC MODEL OF BARYONS AND MES M.GELL-MANN California Institute of Technology, Pasadena, California Received 4 January 1964	ONS *
	A simpler and more elegant scheme can be constructed if we allow non-integral values f charges. We can dispense entirely with the be baryon b if we assign to the triplet t the follow properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon numbe We then refer to the members u^3 , $d^{-\frac{1}{3}}$, and a the triplet as "quarks" 6) q and the members anti-triplet as anti-quarks \bar{q} . Baryons can not constructed from quarks by using the combine $(q q q)$, $(q q \bar{q} \bar{q})$, etc. It is assuming that the baryon configuration $(q q q)$ gives just the rep tations 1, 8, and 10 that have been observed.	be for the basic bwing er $\frac{1}{3}$. s $\frac{1}{3}$ of s of the bw be hations tide out lowest bresen- , while

19/02/16, J-PARC, Japan

HOW TO DO SPECTROSCOPY?

Large cross sections 😂

- Large combinatorial background S
- Resonances appear as bumps
- ➤ Hard to disentangle broad structures
- Difficult to assess spin due to the unknown initial polarization
- Presence of "reflections"/"feed-downs"

19/02/16, J-PARC, Japan

HOW TO DO SPECTROSCOPY?

19/02/16, J-PARC, Japan

HOW TO DO SPECTROSCOPY?

19/02/16, J-PARC, Japan

HOW TO DO SPECTROSCOPY?(II)

19/02/16, J-PARC, Japan

3-BODY DECAY WITH SPINLESS DAUGHTERS

Constraints	Degree of freedom
3 four-vectors	12
4-momentum conservation	-4
3 masses	-3
3 Euler angles	-3
ТОТ	2

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} \overline{|\mathcal{M}|^2} dm_{12}^2 dm_{23}^2$$

DALITZ PLOT

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} \overline{|\mathcal{M}|^2} dm_{12}^2 dm_{23}^2$$

The scatter plot m_{12}^2 vs m_{23}^2 is usually called *Dalitz* plot

 $|\mathcal{M}|^2 = Const \Rightarrow Dalitz uniformly populated$ Nonuniformity \Rightarrow Information on $|\mathcal{M}|^2$

$$J/\psi
ightarrow \pi^+\pi^-\pi^0$$

 $m^{2}(\pi^{+}\pi^{0})$

"I visualize geometry better than numbers."

$$D^0 \to \pi^+ \pi^- \pi^0$$

19/02/16, J-PARC, Japan

 $m^2(\pi^0\pi^0)$ / GeV²

2

 $p\bar{p} \to \pi^0 \pi^0 \pi^0$

 $m^2(\pi^6\pi^6) / GeV^2$

2

00

M. Pappagallo

(GeV/c²)²

KINEMATICAL REFLECTIONS/SHADOWS

[BaBar, Phys.Rev. D83 (2011) 052001]

19/02/16, J-PARC, Japan

KINEMATICAL REFLECTIONS/SHADOWS

Confirmation of the Z(4430)⁺ $\rightarrow \psi(2S)\pi^+$ state (Amplitude analysis of B⁰ $\rightarrow \psi(2S)$ K⁻ π^+)

19/02/16, J-PARC, Japan

The B $\rightarrow \Psi(2S)$ K T Decay

3-body decay with a vector state as a daughter

Constraints	Degree of freedom
3 four-vectors	12
4-momentum conservation	-4
3 masses	-3
3 Euler angles	-3
Vector helicity	2
ТОТ	4

The "Dalitz" plot is itself a projection of a 4-D space

Any Reflection?

19/02/16, J-PARC, Japan

A BIT OF HISTORY: Z(4430)+

* Observed in the $\psi(2S)\pi^+$ in $B^{0(+)} \to \psi(2S)\pi^+K^{-(0)}$ decays by Belle

[Belle, PRL100, 142001 (2008)]

Clear signature of exotic: Decay to charmonium $\rightarrow c\bar{c}$ pair content Electric charged \rightarrow at least 2 more light quarks $N_{quarks} >= 4!$ Tetraquark, D^*D_1 molecule?

1-D fit of $\psi(2S) \pi$ mass spectrum!

*

A BIT OF HISTORY: Z(4430)+

* Observed in the $\psi(2S)\pi^+$ in $B^{0(+)} \to \psi(2S)\pi^+K^{-(0)}$ decays by Belle

 \otimes Z(4430)⁺ not confirmed (nor excluded) by BaBar [BaBar, PRD 79, 112001 (2009)]

19/02/16, J-PARC, Japan

M. Pappagallo

A BIT OF HISTORY: Z(4430)+

* Observed in the $\psi(2S)\pi^+$ in $B^{0(+)} \to \psi(2S)\pi^+K^{-(0)}$ decays by Belle

[Belle, PRL100, 142001 (2008)]

* Clear signature of exotic: Decay to charmonium $\rightarrow c\bar{c}$ pair content Electric charged \rightarrow at least 2 more light quarks $N_{quarks} >= 4!$ Tetraquark, D^*D_1 molecule?

- * $Z(4430)^+$ not confirmed (nor excluded) by BaBar [BaBar, PRD 79, 112001 (2009)]
- * Later 2D "Dalitz" technique: $M^2(\psi(2S)\pi^+)$ vs $M^2(K^-\pi^+)$ [Belle, PRD 80, 031104 (R) (2009)]

* Belle: full 4D amplitude analysis. $J^P = 1^+$ favoured but $J^P = 0^-$ not excluded

[Belle, PRD 88 (2013) 074026]

19/02/16, J-PARC, Japan

INDEPENDENT VARIABLES

LHCb: PRD92, 112009 (2015)

Amplitude Analysis

$$\vec{\Phi} = (m_{K\pi}^2, m_{\psi\pi}^2, \cos\theta_{\psi}, \phi) \Rightarrow \frac{d\Gamma}{d\vec{\Phi}} \propto |\mathcal{M}(\vec{\Phi})|^2$$

Model Independent Analysis

$$\vec{\Phi} = (m_{K\pi}^2, \cos\theta_{K*}, \cos\theta_{\psi}, \phi) \Rightarrow \frac{d\Gamma}{d\vec{\Phi}} \propto |\mathcal{M}(\vec{\Phi})|^2 p(\vec{\Phi}) q(\vec{\Phi})$$

19/02/16, J-PARC, Japan

19/02/16, J-PARC, Japan

MODEL INDEPENDENT APPROACH (*i.e.* A LA **BABAR**) LHCb: PRD92, 112009 (2015)

20

M. Pappagallo

19/02/16, J-PARC, Japan

LHCb: PRD92, 112009 (2015)

Unlikely a contribution from K^* resonances with J > 3

19/02/16, J-PARC, Japan

19/02/16, J-PARC, Japan

QUANTITATIVE RESULTS FROM MODEL INDEPENDENT APPROACH

LHCD

LHCb: PRD92, 112009 (2015)

Test significance of implausible $N_{max} < N < 30$ moments using the log-likelihood ratio:

$$\Delta(-2\text{NLL}) = -2\log\frac{\mathcal{L}_{N_{\max}}}{\mathcal{L}_{30}} = -2\log\frac{\prod_{i}\mathcal{F}_{N_{\max}}(m_{\psi'\pi}^{i})}{\prod_{i}\mathcal{F}_{30}(m_{\psi'\pi}^{i})}$$

Statistical simulations of pseudo-experiments generated from the $N < N_{max}$ hypotheses

Explanation of the data with plausible K* contributions is ruled at high significance without assuming anything about K* resonance shapes or their interference patterns!

19/02/16, J-PARC, Japan

THE ISOBAR MODEL

How to model a single term

19/02/16, J-PARC, Japan

RESULTS OF A FIT WITHOUT Z(4430)+

[LHCb: PRL 112, 222002 (2014)]

Can the reflections of K* resonances describe the $m(\psi'\pi)$ distribution?

The data cannot be adequately described only using $J \leq 3$ K* contributions.

19/02/16, J-PARC, Japan

4D AMPLITUDE FIT AND CONFIRMATION OF Z(4430)⁺

[LHCb: PRL 112, 222002 (2014)]

Large interference between Z(4430) and K* resonances
 Very good agreement between LHCb/Belle results

19/02/16, J-PARC, Japan

RESONANT BEHAVIOR OF Z(4430)+

[LHCb: PRL 112, 222002 (2014)]

Observation of a rapid change of phase near maximum of magnitude ⇒ resonance!

19/02/16, J-PARC, Japan

Observation of two pentaquarks $P_c^+ \rightarrow J/\psi p$ (Amplitude analysis of $\Lambda_b \rightarrow J/\psi p K^-$)

19/02/16, J-PARC, Japan

K.H. Hicks, "On the conundrum of the pentaquark", Eur.Phys.J. H37 (2012) 1

19/02/16, J-PARC, Japan

FIRST OBSERVATION OF $\Lambda_b \rightarrow J/\Psi K^- p$

[LHCb: PRL 111 (2013) 102003]

Why did LHCb arrive first? The decay was not observed before!

19/02/16, J-PARC, Japan

FIRST OBSERVATION OF $\Lambda_b \rightarrow J/\Psi K^- p$

[LHCb: PRL 111 (2013) 102003]

➢ Why did LHCb arrive first? The decay was not observed before!
 ➢ Measurement of the Λ_b lifetime with L=1 fb⁻¹

[LHCb: PRL 115, 07201 (2015)]

Selection updated with the full Run I dataset (3fb⁻¹) 26k $\Lambda_{\rm h}{}^0$ candidates. Background ~ 5.4% 520Events/(4 MeV) m²/_{J/ψp} [GeV²] LHCb LHCb 🗕 data total fit signal ····· background 4000 20 Λ_{h}^{0} signal range 3000 18 2000 1000 sideband sideband 16 m^2_{Kp} [GeV²] 2 3 5 4 5500 5600 5700 $m_{J/\psi\,p\,K}\,[{
m MeV}]$

[LHCb: PRL 115, 07201 (2015)]

- Efficiency flat over the "Dalitz" plot
- Cross checks:
 - ✓ Veto B_s →J/ ψ KK & B^0 →J/ ψ K π after swapping the mass hypothesis of the Λ_b daughters: $p \leftarrow \rightarrow K$ or $p \leftarrow \rightarrow \pi$
 - ✓ Clone and ghost tracks carefully removed
 - ✓ Not a partially reconstructed $\Xi_{\rm b}$ decay

UNEXPECTED NARROW PEAK IN m(J/Y p)

[LHCb: PRL 115, 07201 (2015)]

19/02/16, J-PARC, Japan

A* DECAY MODELS

	115, 07201 (2015)]					
Two models L = angular	s: Reduced r momentu	No high-J ^P high mass states, limited <i>L</i>	All states, all <i>L</i>			
	State	J^P	$M_0 ({ m MeV})$	$\Gamma_0 \ ({\rm MeV})$	# Reduced	# Extended
	$\Lambda(1405)$	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
	$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
	$\Lambda(1600)$	$1/2^{+}$	1600	150	3	4
	$\Lambda(1670)$	$1/2^{-}$	1670	35	3	4
All known Λ* states	$\Lambda(1690)$	$3/2^{-}$	1690	60	5	6
	$\Lambda(1800)$	$1/2^{-}$	1800	300	4	4
	$\Lambda(1810)$	$1/2^{+}$	1810	150	3	4
	$\Lambda(1820)$	$5/2^{+}$	1820	80	1	6
	$\Lambda(1830)$	$5/2^{-}$	1830	95	1	6
	$\Lambda(1890)$	$3/2^+$	1890	100	3	6
	$\Lambda(2100)$	$7/2^{-}$	2100	200	1	6
	$\Lambda(2110)$	$5/2^{+}$	2110	200	1	6
	$\Lambda(2350)$	$9/2^{+}$	2350	150	0	6
	$\Lambda(2585)$?	≈ 2585	200	0	6
			t parameters	s: 64	146	
19/02/16, J-PA	RC, Japan		M. Pappaga	llo		39

FIT WITH $\land \Rightarrow pK$ STATES ONLY

[LHCb: PRL 115, 07201 (2015)]

Use of extended model, so all possible known Λ^* amplitudes: m_{Kp} projection looks fine, but...

19/02/16, J-PARC, Japan

LHCb ГНСр

FIT WITH $\land \Rightarrow pK$ STATES ONLY

[LHCb: PRL 115, 07201 (2015)]

Extended Λ^* model:

>...the fit projection can't reproduce the peaking structure in J/ψ p >Adding non-resonant term, Σ^* 's or extra unknown Λ^* 's doesn't help

ADDING $P_c \rightarrow J/\Psi p$ AMPLITUDES

[LHCb: PRL 115, 07201 (2015)]

Extended Λ* model + 1 Pentaquark decaying to J/ψ p
Try all J^P of P_c⁺ up to 7/2[±]
Best fit has J^P =5/2[±]. Still not a good fit

19/02/16, J-PARC, Japan

ADDING $P_c \rightarrow J/\Psi p$ AMPLITUDES

[LHCb: PRL 115, 07201 (2015)]

<u>Reduced Λ* model + 2 Pentaquarks decaying to J/ψ p</u>

>Obtain good fits even with the reduced Λ^* model

>Best fit has J^P=(3/2⁻, 5/2⁺), also (3/2⁺, 5/2⁻) & (5/2⁺, 3/2⁻) are preferred

>Adding more amplitudes doesn't improve the fit quality

19/02/16, J-PARC, Japan

19/02/16, J-PARC, Japan

DO WE REALLY NEED 2 P_c+'S? YES

[LHCb: PRL 115, 07201 (2015)]

19/02/16, J-PARC, Japan

SIGNIFICANCES AND RESULTS

[LHCb: PRL 115, 07201 (2015)]

 ✓ Simulations of pseudo-experiments are used to quote the significances: ✓ Significance of P_c(4450)⁺ state is 12σ ✓ Significance of P_c(4380)⁺ state is 9σ 							
 Main systematic uncertainty: difference between extended and reduced fit models. Taken in account while computing the significances 							
State	Mass (MeV)	Width (MeV)	Fit fraction (%)				
P _c (4380) ⁺	$4380 \pm 8 \pm 29$	$205 \pm 18 \pm 86$	$8.4{\pm}0.7{\pm}4.2$				
$P_{c}(4450)^{+}$	$4449.8 {\pm} 1.7 {\pm} 2.5$	$39 \pm 5 \pm 19$	$4.1 \pm 0.5 \pm 1.1$				

P _c (4450)⁺	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$	$4.1 \pm 0.5 \pm 1.1$
$\Lambda(1405)$			$15 \pm 1 \pm 6$
$\Lambda(1520)$			$19 \pm 1 \pm 4$

19/02/16, J-PARC, Japan

LHCb ГНСр

ARGARD DIAGRAMS

[LHCb: PRL 115, 07201 (2015)]

➢ Good evidence for the resonant character of P_c(4450)⁺
 ➢ The errors for P_c(4380)⁺ are too large to be conclusive

19/02/16, J-PARC, Japan

PENTAQUARKS ON THE MEDIA

[LHCb: PRL 115, 07201 (2015)]

Scientists at the Large Hadron Collider have announced the discovery of a new

It was first predicted to exist in the 1960s but, much like the Higgs boson particle before it

particle called the pentaquark

physicsworld TOP10 BREAKTHROUGH 2015

19/02/16, J-PARC, Japan

...AND FRIENDS

Eur.Phys.J. C74 (2014) 10, 2981

facebook		Profile edit			Friends v Network			
IACEDUUK	State	M, Me	V Г, Ме	V J ^{PC}	Process (mode) $P \rightarrow K(-+K(-))$	Experiment $(\#\sigma)$	Year Sta	atus
	A (3872)	3871.68 ± 0.1	17 < 1.2	1	$B \rightarrow K(\pi^+\pi^- J/\psi)$ $p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	CDF [1032, 1030] (>10), BaBar [1031] (8.6) CDF [1032, 1033] (11.6), D0 [1034] (5.2)	2003 C 2003 C)k
- I					$ \begin{array}{l} pp \rightarrow (\pi^+\pi^-J/\psi) \dots \\ B \rightarrow K(\pi^+\pi^-\pi^0 J/\psi) \\ B \rightarrow K(\gamma J/\psi) \end{array} $	Belle [1037] (4.3), BaBar [1038] (4.0) Belle [1039] (5.5), BaBar [1040] (3.5) LHCb [1041] (> 10)	2012 C 2005 C 2005 C)k)k
Search *					$B \to K(\gamma \psi(2S))$	BaBar [1040] (3.6), Belle [1039] (0.2) LHCb [1041] (4.4)	2008 N	C!
Q	$Z_c(3885)^+ \ Z_c(3900)^+$	3883.9 ± 4 3891.2 ± 3	$\begin{array}{ccc} .5 & 25 \pm 1 \\ .3 & 40 \pm 8 \end{array}$	$2 1^{+-}_{?^{-}}$	$\begin{array}{l} B \to K(D\bar{D}^{*}) \\ Y(4260) \to \pi^{-}(D\bar{D}^{*})^{+} \\ Y(4260) \to \pi^{-}(\pi^{+}J/\psi) \end{array}$	Belle [1042] (6.4), BaBar [1043] (4.9) BES III [1044] (np) BES III [1045] (8), Belle [1046] (5.2) T. Xiao <i>et al.</i> [CLEO data] [1047] (>5)	2006 C 2013 N 2013 C)k C!)k
	$Z_c(4020)^+$ $Z_c(4025)^+$	4022.9 ± 2 4026.3 ± 4	$.87.9 \pm 3$ $.5248 \pm 9$.7 ??-	$Y(4260, 4360) \rightarrow \pi^{-}(\pi^{+}h_{c})$ $Y(4260) \rightarrow \pi^{-}(D^{*}\bar{D}^{*})^{+}$	BES III [1048] (8.9) BES III [1048] (10)	2013 N 2013 N	CI
	$Z_b(10610)$	10607.2 ± 2	$.018.4 \pm 2$	2.4 1+-	$\Upsilon(10860) \rightarrow \pi(\pi\Upsilon(1S, 2S, 3S))$ $\Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{c}(1P, 2P))$	Belle [1050–1052] (>10) Belle [1051–1052] (>10)	2010 IV 2011 0)k
Applications edit					$\Upsilon(10860) \rightarrow \pi^{-}(B\bar{B}^{*})^{+}$ $\Upsilon(10860) \rightarrow \pi^{-}(B\bar{B}^{*})^{+}$	Belle [1053] (10) Belle [1053] (8)	2011 0 2012 N	CI
ripplications cont	$Z_b(10650)$	10652.2 ± 1	.5 11.5±2	2.2 1	$\Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}T(1S, 2S, 3S))$ $\Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P, 2P))$	Belle [1050, 1051] (>10) Belle [1051] (16)	2011 C 2011 C)k)k
	Y(3915)	3918.4 ± 1.9	20 ± 5	0/2:+	$\Upsilon(10860) \rightarrow \pi^- (B^*B^*)^+$ $B \rightarrow K(\omega J/\psi)$	Belle [1053] (6.8) Belle [1088] (8), BaBar [1038, 1089] (19)	2012 N 2004	C! Ok
U Photos	` <i>´</i>				$e^+e^- ightarrow e^+e^- (\omega J/\psi)$	Belle [1090] (7.7), BaBar [1091] (7.6)	2009	Ok
	$\chi_{c2}(2P)$	3927.2 ± 2.6 2042^{+9}	24 ± 6 $27^{\pm 27}$	2^{++} $2^{?+}$	$e^+e^- \rightarrow e^+e^-(D\bar{D})$ $e^+e^- \rightarrow I/(e^-(D\bar{D}^*))$	Belle [1092] (5.3), BaBar [1093] (5.8)	2005	Ok
Croups	Y(4008)	3942_{-8} 3891 ± 42	$\frac{37}{-17}$ 255 ± 42	1	$e^+e^- \rightarrow J/\psi (DD^-)$ $e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	Belle [1086, 1087] (6) Belle [1046, 1094] (7.4)	2003	NC
aroups	$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)}(\pi))$	PDG [1]	1978	Ok
	7(4070)+	4051+24	00+51	a?+	$e^+e^- \rightarrow (\eta J/\psi)$ $\bar{p}_0 \rightarrow V^-(-+-)$	Belle [1095] (6.0)	2013	NC!
31 Events	X(4050) Y(4140)	4051_{-43} 4145.8 ± 2.6	82_{-55}^{-55} 18 ± 8	??+	$B^+ \rightarrow K^-(\pi^+ \chi_{c1})$ $B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1098] (5.0), BaBar [1097] (1.1) CDF [1098] (5.0), Belle [1099] (1.9),	2008	NCI
	`					LHCb [1100] (1.4), CMS [1101] (>5)		
E Maulashalasa	4/(4160)	4159 ± 2	102 ± 8	1	$a^+a^- \rightarrow (D^{(*)}\bar{D}^{(*)})$	D0 [1102] (3.1)	1078	Ol:
(Interview) Marketplace	ψ(4100)	4100 ± 0	100 ± 8	1	$e^+e^- \rightarrow (\eta J/\psi)$	Belle [1095] (6.5)	2013	NC!
	X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \to J/\psi(D^*\bar{D}^*)$	Belle [1087] (5.5)	2007	NC!
J il ika	$Z(4200)^+$	4196^{+35}_{-30}	370^{+99}_{-110}	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$ $\bar{D}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1103] (7.2)	2014	NC!
	X(4250) Y(4260)	4248_{-45} 4250 ± 9	177_{-72} 108 ± 12	1	$B^{\circ} \rightarrow K (\pi^+ \chi_{c1})$ $e^+e^- \rightarrow (\pi \pi J/\psi)$ E	Belle [1096] (5.0), BaBar [1097] (2.0) BaBar [1104, 1105] (8), CLEO [1106, 1107] (2008 11) 2005	Ok
						Belle [1046, 1094] (15), BES III [1045] (np)	
					$e^+e^- \to (f_0(980)J/\psi)$	BaBar [1105] (np), Belle [1046] (np)	2012	Ok
					$e^+e^- \rightarrow (\pi^- Z_c(3900)^+)$ $e^+e^- \rightarrow (\gamma X(3872))$	BES III [1045] (8), Belle [1046] (5.2) BES III [1108] (5.3)	2013	Ok NCI
	Y(4274)	4293 ± 20	35 ± 16	? ^{?+}	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1098] (3.1), LHCb [1100] (1.0), CMS [1101] (>3), D0 [1102] (np)	2011	NC!
	X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [1109] (3.2)	2009	NC!
	Y(4360) $Z(4430)^+$	4354 ± 11 4458 ± 15	78 ± 16 166^{+37}	1+-	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$ $\bar{B}^0 \rightarrow K^-(\pi^+\psi(2S))$	Belle [1110] (8), BaBar [1111] (np) Belle [1112, 1113] (6.4), BaBar [1114] (2.4	2007	Ok
	- ()		-32			LHCb [1115] (13.9)	,	
		+0			$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1103] (4.0)	2014	NC!
	X (4630) X (4660)	4634_{-11}^{+3} 4665 ± 10	92_{-32}^{+41} 53 ± 14	1	$e^+e^- \rightarrow (\Lambda_c^+ \Lambda_c^-)$ $e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1116] (8.2) Belle [1110] (5.8), BaBar [1111] (5)	2007 2007	NC! Ok
	Υ(10860)	10876 ± 11	55 ± 28	1	$e^+e^- \rightarrow (B^{(*)}_{(*)}\bar{B}^{(*)}_{(*)}(\pi))$	PDG [1]	1985	Ok
	,)				$e^+e^- \rightarrow (\pi\pi\Upsilon(1S, 2S, 3S))$	Belle [1051, 1052, 1117] (>10)	2007	Ok
					$e^+e^- \rightarrow (f_0(980)\Upsilon(1S))$	Belle [1051, 1052] (>5)	2011	Ok
					$e^+e^- \rightarrow (\pi Z_b(10610, 10650))$ $e^+e^- \rightarrow (\pi \Upsilon(1S, 2S))$	Belle [1051, 1052] (>10) Belle [986] (10)	2011	Ok
					$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(1D))$	Belle [986] (9)	2012	Ok
	$Y_b(10888)$	10888.4 ± 3.0	$30.7\substack{+8.9\\-7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle [1118] (2.3)	2008	NC!

19/02/16, J-PARC, Japan

MODELS FOR TETRA- AND PENTA-QUARKS

19/02/16, J-PARC, Japan

Z(4430)+

Molecular model

- Positive parity rules out interpretation in terms of D*(2010)D₁(2420) molecule or threshold effect (cusp) [Rosner, PRD76(2007)114002][Bugg, J.Phys.G35(2008)075005]
- DD*(2S) molecule? [T. Barnes, F. E. Close, E. S. Swanson, Phys. Rev. D 91, 014004 (2015)]

19/02/16, J-PARC, Japan

PENTAQUARK P_c+

- > Tightly bound
 - $\checkmark\,$ Jaffe, PRD15(1977) 267 $\,$
 - ✓ Strottman, PRD20(1979) 748
 - ✓ Maiani et al. PRD71(2005)014028
- Molecular model with meson exchange for binding
 - ✓ Törnqvist, Z.Phys.C61(1994) 525
- Others (postdictions):
 - ✓ Rescattering, "Cusps"

A narrow pentaquark state challenges many models

PRD 92 (2015) 7, 071502

19/02/16, J-PARC, Japan

SUMMARY & PROSPECT

LHCD ГНСр

- Confirmation of Z(4430)+
 - \succ J^P =1⁺
 - Resonance character shown
 - Molecule or tetraquark?[Maiani et al, PRD 89, 114010 (2015)]
- > Observation of two Pentaquarks P_c^+
 - \succ More data required to determine J^{P}
 - Resonance character shown

What's next?

- Search for new decay modes or in different system: (e.g.) $\Lambda_b \rightarrow J/\psi$ p π
- \succ Search for the isospin partners
- Search for other (distinctive) states: (e.g.) ccdu or triple charged pentaquarks
- Confirmation of many charmonium-like states

Back-up slides

19/02/16, J-PARC, Japan

FEED-DOWNS OF $D_1/D_2^* \rightarrow D^*\pi$ Decays into $D\pi$ Mass Spectrum

SECOND EXOTIC Z+?

[PRL 112, 222002 (2014)]

Fit confidence level increases with a second exotic ($J^{\rm P} {=} 0^{\text{-}}$) component, but...

- > No evidence for Z_0 in model independent approach.
- \succ Argand diagram for Z_0 is inconclusive.
- \succ Need larger samples to characterize this state.

 $M_{Z_0} = 4239 \pm 18^{+45}_{-10} \text{MeV}$ $\Gamma_{Z_0} = 220 \pm 47^{+108}_{-74} \text{MeV}$ $f_{Z_0} = (1.6 \pm 0.5^{+1.9}_{-0.4})\%$

Mass and width consistent with other Z's observed by Belle:

> Z⁻ →
$$\chi_{c1}\pi^-$$
 (J^P≠0⁻)[PRD 78 (2008) 072004]

> Z⁻ → J/ψπ⁻ [arXiv: 1408.6457]

