The RHIC Spin Program Overview

✓ Nucleon helicity structure✓ Transverse spin phenomena

A.Bazilevsky (BNL) July 22-24, 2015 JAEA, Japan

RHIC Spin

arXiv: 1501.01220

The RHIC Spin Program Achievements and Future Opportunities

How do quarks and gluons build the proton spin ¹/₂
 What do transverse spin phenomena teach us

Nucleon Helicity Structure

 \Rightarrow Spin Crisis

For complete description include parton orbital angular momentum L_z:

 $\frac{1}{2} = \frac{1}{2} \left(\Delta q + \Delta \overline{q} \right) + \Delta G + L_Z$

Determination of ΔG and Δq -bar has been the main goal of longitudinal spin program at RHIC

From DIS to pp:

Probes ΔG :

Q² dependence of quark PDFs Photon-gluon fusion

(Anti-)quark flavor separation:

Through fragmentation processes

Probes ΔG :

Directly from gg and qg scattering

(Anti-)quark flavor separation: Through $ud \rightarrow W^+$ and $ud \rightarrow W^-$

Complementary approaches

RHIC as polarized proton collider

PHENIX and STAR

PHENIX: High rate capability High granularity Good mass resolution and PID Limited acceptance Upgrades to forward capabilities, inner tracking

STAR:

Large acceptance with azimuthal symmetry Good tracking and PID Central and forward calorimetry Upgrades to higher rate capabilities, Inner tracking

Probing ΔG in pol. pp collisions

$$A_{LL} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}} = \frac{\sum_{a,b} \Delta f_a \otimes \Delta f_b \otimes d\hat{\sigma}^{f_a f_b \to fX} \cdot \hat{a}_{LL}^{f_a f_b \to fX} \otimes D_f^{f_b}}{\sum_{a,b} f_a \otimes f_b \otimes d\hat{\sigma}^{f_a f_b \to fX} \otimes D_f^{h_b}}$$

Double longitudinal spin asymmetry ${\rm A}_{\rm LL}$ is sensitive to $\Delta {\rm G}$

$$Measuring A_{LL}$$

$$A_{LL} = \frac{d\sigma_{++} - d\sigma_{+-}}{d\sigma_{++} + d\sigma_{+-}} = \frac{1}{|P_1P_2|} \frac{N_{++} - RN_{+-}}{N_{++} - RN_{+-}}; \qquad R = \frac{L_{++}}{L_{+-}}$$

(N) Yield(R) Relative Luminosity(P) Polarization

✓ Bunch spin configuration (+ or - helicity) alternates every 106 ns
 ✓ Data for all bunch spin configurations are collected at the same time

⇒ Possibility for false asymmetries is greatly reduced

$\Delta G: \pi 0$ and jet A_{LL}

First observation of non-zero A_{LL} associated with non-zero ΔG !

ΔG : DIS+pp global QCD fit

DSSV: D. de Florian R. Sassot M. Stratmann W. Vogelsang

DSSV: Phys Rev Lett, 101, 072001 (2008)
Data from up to 2006
New DSSV: Phys Rev Lett, 113, 012001 (2014)

Data from up to 2009

$$\int_{0.05}^{1} dx \Delta g(x) = 0.2_{-0.07}^{+0.06}$$

Significant non-zero ∆g(x) in the kin. region probed by RHIC Similar result from another global fit NNPDF
Still huge uncertainty in unmeasured region (x<0.05)</p>
=> Measurements at higher √s and forward rapidity

ΔG : Towards lower x

ΔG : Near Term Projections

π0 in forward region at √s=510 GeV (PHENIX): Based on collected 2013 data Probes lower x down to ~10⁻³

Inc. Jet at $\sqrt{s=200 \text{ GeV}(\text{STAR})}$: Based on 2009/15 data Considerably improve exp. precisions

ΔG : Near Term Projections

DSSV: D. de Florian R. Sassot M. Stratmann W. Vogelsang

ΔG fit in each x bin

Innermost band: after inclusion of projected data up to 2015

x>0.01 mainly from central rap. data x<0.01 mainly from forward rap. data

Significant improvement expected soon, particularly at x<0.03

Other channels are also being measured γ , η , $\pi \pm$, $h \pm$, heavy flavor through e and μ jet-jet, h-h, γ -jet, γ -h Will serve for syst. effects study in $\Delta g(x)$ fit

ΔG : The status

DSSV: D. de Florian R. Sassot M. Stratmann W. Vogelsang

Gluon contribution:

... Let's wait for RHIC new results to constrain ΔG down to x= 10⁻³

What about quark+antiquark contribution $\Delta\Sigma$

Drop in the integral due to shape of polarized sea quark PDF

Important to measure flavor separated sea quark PDF

- \checkmark To understand dynamics of the quarkantiquark fluctuations
- ✓ Unpolarized sea is not symmetric: $\overline{u} \neq \overline{d}$ => what about polarized sea?

$$\int_{001}^{1} dx \Delta \Sigma \sim 0.366 \pm_{0.062}^{0.042} @10 \text{GeV}^2$$

$$\int_{-6} dx \Delta \Sigma \sim 0.242 @ 10 \text{GeV}^2$$

(Anti)quark flavor separation

DSSV: PRL 101, 072001 (2008)

Mainly from **SIDIS**:

Fragmentation functions to tag (anti)quark flavor

 $p+p \rightarrow W^{\pm} \rightarrow (e/\mu)^{\pm} + v$

 ➢ Parity violating W production: Fixes quark helicity and flavor: *d*_L u
 *ū*_R → W⁻ u
 *u*_L d
 *d*_R → W⁺

 ➢ No fragmentation involved

 ➢ High Q² (set by W mass)

$$A_L^{W^+} = \frac{-\Delta u(x_1)\overline{d}(x_2) + \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2)}$$

Central region: $W^{\pm} \rightarrow e^{\pm}$

- Triggered by energy in EMCal
- Momentum from energy in EMCal
- Charge from tracking in B field

Δu-bar tends to be more positive Symmetry breaking in polarized quarks?

W: Central vs Forward region

Clear Jacobian peak at central rapidities

Suppressed/No Jacobean peak at forward rapidities

Forward region: $W^{\pm} \rightarrow \mu^{\pm}$ PHENIX

Muon Arms: 1.2 < $|\eta|$ < 2.4 $\Delta \phi = 2\pi$

Muon Tracker (MuTr) Tracking, Momentum Muon Identifier (MuID) µ/h separation Resistive Plate Chamber (RPC) Timing, background rejection Forward Vertex Detector (FVTX) More precise tracking, background rejection Dedicated Trigger Based on MuTr and RPC

To tag high pT muons

Forward region: $W^{\pm} \rightarrow \mu^{\pm}$ PHENIX

Muon background: Heavy flavor Quarkonia Decay muons Z/DY Etc. Not significant at >15 GeV/c

If include hadrons (misidentified as μ), $h \rightarrow \mu$ (fake high pT) and pT smearing

Total background, accounting for all sources and smearing:

Forward region: $W^{\pm} \rightarrow \mu^{\pm}$ PHENIX

Measured cross section agrees with calculations within large uncertainties

 \boldsymbol{A}_L uncertainties are still large

Improve S/B

Tracking alignment → reduce momentum smearing and improve charge reco S/B = 0.2 - 1 depending on η

Symmetry breaking in polarized sea?

Unpolarized sea is not symmetric

Polarized sea symmetric may be broken too!

Already available data (Run13) will improve the measurement further

Transverse Spin

Transverse Spin Asymmetries

Large Transverse Spin Asymmetries have been observed in p**↑**p

26

Puzzles from RHIC

Naïve collinear pQCD predicts $A_N \sim \alpha_s m_q / p_T \sim 0$

Asymmetries survive at highest \sqrt{s} Non-perturbative regime! Asymmetries of the ~same size at all \sqrt{s}

Asymmetries scale with x_F

z 0.08 $\pi^{0} A_{N} vs p_{\tau} (0.16 < x_{r} < 0.24)$ (Isolation 70 mR) 0.07 \sqrt{s} = 500 GeV π^{0} Energy 50 GeV (x_c ~ 0.20) 0.06 **STAR Run 11 PRELIMINARY** 0.05 0.04 0.03 0.02 0.01 $X_{F} < 0$ -0.01 -0.02 4 5 6 $p_{\overline{t}}$ / GeV

Collinear (higher twist) pQCD predicts $A_N \sim l/p_T$

No fall off is observed out to $p_T \sim 7 \text{ GeV/c}$

More puzzles from RHIC

 π + π - opposite asymmetries is believed to come from opposite spin-kT properties of valence u and d quarks ... But $K^- = \overline{u}s$ doesn't contain any valence quarks but still shows the same asymmetry as $K^+ = u\overline{s}$

Large antiproton asymmetry, while ~0 proton asymmetry??

BRAHMS

Sources

Collins effect (Nucl.Phys.B396,161):

Final state effect

Correlation between spin of the fragmenting parton and the hadron pT (spin dependent fragm. function)

Connected to tensor charge

Sivers effect (Phys.Rev.D41,83): Initial state effect

Correlation between proton spin and parton kT

Relates to parton motion => Connected to orbital momentum!

Initial State: TMD vs Twist3 Intermediate p_T $Q >> p_T >> \Lambda_{OCD}$ Transverse Collinear/ momentum twist-3 dependent $Q, p_T > A_{QCD}$ $Q > p_T > = \Lambda_{QCD}$ Efremov, Teryaev; Qiu, Sterman \mathbf{P} Sivers fct < P_T Q AQCD << Need 2 scales Need only 1 scale Q^2 and p_+ Q^2 or p_{t} Remember pp: But should be of reasonable size several observables one scale Ji, Qiu, Vogelsang, Yuan, **Exception:** PRL. 97, 082002 (2006). DY, W/Z-production should be applicable to pp observables $A_{N}(\pi^{0}/\gamma/\text{jet})$ related through

 $-\int d^2k_{\perp} \frac{\left|k_{\perp}^2\right|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2) |_{SIDIS} = T_{q,F}(x,x)$

TMD vs Twist3: Sign Mismatch?

$$-\int d^2k_{\perp} \frac{\left|k_{\perp}^2\right|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{SIDIS} = T_{q,F}(x,x)$$

Kang, Qiu, Vogelsang, Yuan PRD 83 (2011), 094011

pp→π X (Twist-3) SIDIS (TMD)

Spin mismatch! Sivers contribution is small in $pp \rightarrow \pi X$? => Collins dominate?

Collins dominate?

A_N from twist-3 fragmentation functions (Kanzawa, Koike, Metz, Pitoniak, arXiv:1404.1033)

Describes data well !

 $pp \rightarrow \pi^0 X$

Largest A_N for isolated $\pi 0$

Smaller A_N for more complex events (more activity around $\pi 0$)

Smaller A_N with away side jet present

Does A_N come from $2\rightarrow 2$ scattering? May A_N come from hard diffraction:

 $p \uparrow +p \rightarrow \pi^{0}+p'+X$

STAR has already collected data in 2015 with Roman Pots to tag forward scattered p

To measure at RHIC

Initial State:

Sivers/Twist3 mechanism

- \triangleright A_N for jets, direct photons
- \succ A_N for heavy flavor \rightarrow gluon
- \succ A_N for W, Z, DY

Final State:

Collins mechanism

- ➢ Hadron azimuthal asymmetry in jet
- Hadron pair azimuthal asymmetry (Interference fragmentation function)

Sensitive to correlations **proton spin** – parton **transverse motion**

Not universal between SIDIS & pp

Sensitive to transversity x spin-dependent FF

Universal between SIDIS & pp & e+e-

Other mechanisms

Diffraction

Fundamental Role of Sivers

Brodsy, Hwang, Schmidt (Phys.Let.B530,99):

Sivers function in DIS can arise from interference with diagrams with soft gluon exchange between outgoing quark and target spectator

Collins (Phys.Let.B536,43):

Sivers asymmetry is revered in sign in Drell-Yan process

Critical test for our understanding of TMD's and TMD factorization

A_N for DY and W/Z, theory

Too strong evolution effect ?

Need experimental data!

 A_N for W/Z, data

37

A_N for Jets

Data: AnDY arXiv: 1304.1454 Theory (from SISIS): arXiv:1302.3218

Cancelation of u and d Sivers TMDs => Small A_N Would be good to measure u and d jets separately

A_N for Direct Photon

Proj for Run-2015

Proj for Run-2017

Data is already available! Analysis is ongoing

 $\Delta R_{min} \times \langle p_{T,jet} \rangle = 1.3 \text{ GeV/c}$

3.2 GeV/c

Interference FF

$$P^{\uparrow}P \to \pi^+\pi^- + X \text{ at } \sqrt{s} = 200 \text{ GeV}$$

 $\sqrt{s}=200 \text{ GeV}$

Another way to access transversity !

 $\sqrt{s}=500 \text{ GeV}$

A_N for forward neutron $pp \rightarrow nX$, $|\theta| < 2.5 mrad$

Run-2015:

Collected data from p+Au and p+Al Strong nuclear size dependence Analysis ongoing

42

Discovered in 2002:

PLB 650, 325

$\pi 0 \; A_N$ in pA

Probing gluon saturated matter, Color Glass Condensate (CGC) with polarized protons

Kang, Yuan: PRD84, 034019 Kovchegov, Sievert: PRD86, 034028

- Unique RHIC possibility p[↑]A
- Synergy between CGC based theory and transverse spin physics
- Suppression of A_N in p[↑]A provides sensitivity to Q_s
- Data already collected in Run-2015!

STAR: longer term plans

 $\sim 2021-22$

Forward instrumentation (2.5 $< |\eta| < 4.5$):

- ➢ EMCal+Hcal
- Tracking system
- High precision Sivers&Collins
- DY (Sivers sign change)
- \succ Lowers x ΔG (from di-jets)

PHENIX: longer term plans

~2021-22

By ~2025

Evolve sPHENIX (pp and HI detector) to EIC Detector (ep and eA detector)

- To utilize e and p (A) beams at eRHIC with *e*-energy up to 15 GeV and *p*(A)energy up to 250 GeV (100 GeV/n)
- > e, p, He3 polarized
- Stage-1 luminosity ~10³³ cm⁻² s⁻¹ (~1fb⁻¹/month)

fsPHENIX = "forward" sPHENIX ~2021-22

sPHENIX +

PHENIX reconfigured: forward Si tracker and Muon ID EIC Detector forward systems: GEMs and HCal 90% of the cost common with EIC detector

- \succ Explore the source of large A_N in hadronic collisions
- > Critical TMD test with polarized DY $\rightarrow \mu\mu$
- Cold nuclear matter studies in pA

RHIC -> eRHIC

Electron – Ion Collider

Add electron ring to existing RHIC proton/heavy_ion ring or Add proton/heavy_ion ring to existing electron ring

Back to DIS but at much higher luminosity (x100-1000 as HERA) And much higher \sqrt{s} (with both beams polarized)

~2025

Summary

RHIC Spin program:

- How do gluon contribute to the proton Spin Non-zero (in the limitted x-range) and comparable to (or larger than) quark contribution Need to study lower x
- What is the flavor structure of polarized sea in the proton
 Δu-bar tends to be positive, Δd-bar tends to be negative (symmetry breaking?)
 Will see the more precise conclusion very soon
- What are the origins of transverse spin phenomena in QCD Hadron A_N persists to high √s, and survives at high p_T
 First observation of Collins and IFF asymmetries in pp (access to transversity!)
 A_N for DY and W - fundamental QCD test Other mechanisms for hadron A_N (dffractive?)

Many other results from PHENIX, STAR, BRAHMS and AnDY Much more expected in EIC era !

Backup

TABLE II.	First moments $\Delta f_j^{1,[x_{\min} \rightarrow 1]}$ at $Q^2 = 10 \text{ GeV}^2$.		
	$x_{\min} = 0$ best fit	$\Lambda v^2 = 1$	= 0.001 $\Delta v^2 / v^2 = 2\%$
$\Delta u + \Delta \bar{u}$	0.813	$0.793^{+0.011}_{-0.012}$	$0.793^{+0.028}_{-0.024}$
$\Delta d + \Delta \bar{d}$	-0.458	$-0.416^{+0.011}_{-0.009}$	$-0.416^{+0.035}_{-0.025}$
$\Delta \bar{u}$	0.036	$0.028^{+0.021}_{-0.020}$	$0.028^{+0.059}_{-0.059}$
$\Delta \bar{d}$	-0.115	$-0.089^{+0.029}_{-0.029}$	$-0.089^{+0.090}_{-0.080}$
$\Delta \bar{s}$	-0.057	$-0.006^{+0.010}_{-0.012}$	$-0.006^{+0.028}_{-0.031}$
Δg	-0.084	$0.013^{+0.106}_{-0.120}$	$0.013_{-0.314}^{+0.702}$
ΔΣ	0.242	$0.366\substack{+0.015\\-0.018}$	$0.366\substack{+0.042\\-0.062}$

DSSV: PRL 101, 072001 (2008)

Before RHIC Run9 data for ΔG No W data yet

From Inclusive Pol. DIS

$$\frac{d}{d\ln Q^2} \begin{pmatrix} \Delta q \\ \Delta g \end{pmatrix} = \begin{pmatrix} \Delta P_{qq} & \Delta P_{qg} \\ \Delta P_{gq} & \Delta P_{gg} \end{pmatrix} \otimes \begin{pmatrix} \Delta q \\ \Delta g \end{pmatrix}$$

53

Unpol. Cross Section and pQCD in pp

Good agreement between NLO pQCD calculations and data \Rightarrow pQCD can be used to extract spin dependent pdf's from RHIC data.

ΔG : Towards lower x

da/dtr, (da/dtr,) (pb

d of the (dolder) (pb

10

10

10

From di-jets

55

$W{:}\; A_{\mathsf{L}} \, vs \, \eta_{\mathsf{I}}$

STAR

Central (barrel) region (W \rightarrow e[±], |η|<1) First data from 2009: **PRL106, 062002 (2011)** Forward (endcup) region (W \rightarrow e[±], 1<|η|<2): Forward tracker upgrade, first data in 2012

PHENIX

Central Arms (W \rightarrow e[±], | η |<0.35) First data from 2009: PRL106, 062001 (2011) Forward Arms (W \rightarrow μ^{\pm} , 1.2<| η |<2.4) : Trigger upgraded, first data from 2011

Symmetry breaking in pol. sea?

Unpolarized sea is not symmetric

Symmetry breaking in polarized sea?

Neutron A_N

 $A_N: pp \rightarrow \pi X$

Anselmino et al., Eur. Phys. J. A39, 89 (2009)

PYTHIA: π + mainly produced from u π - equally produced from d and u

$$\Rightarrow |A_N(\pi +)| >> |A_N(\pi -)|$$

Sivers contribution is small in $pp \rightarrow \pi X$?

=

To measure at RHIC

Initial State:

Sivers/Twist3 mechanism

- \triangleright A_N for jets, direct photons
- \succ A_N for heavy flavor \rightarrow gluon
- \succ A_N for W, Z, DY

Final State:

Collins mechanism

- ➢ Hadron azimuthal asymmetry in jet
- Hadron pair azimuthal asymmetry (Interference fragmentation function)

Sensitive to correlations proton spin – parton transverse motion

Not universal between SIDIS & pp

The Collins Effect in the Artru Fragmentation Model

A simple model to illustrate that spin-orbital angular momentum coupling can lead to left right asymmetries in spin-dependent fragmentation:

Naïve Sivers Interpretation

Sivers effect and Orbital Angular Momentum

Semi-classical picture :

If quarks have L_q , probability to find quark which carries momentum fraction of " \mathcal{X} " is different between left & right sides in the nucleon (viewed from virtual photon).

Q2 dependence

 ΔG is dynamic value – Q² dependent ΔG can be large at large Q² (and can be >>1/2) no matter how small it is at some low Q² Large ΔG at large Q² is compensated by L_g

$$\frac{1}{2}^{proton} = \frac{1}{2}\Delta\Sigma + \Delta g + L_q + L_g$$

$$\frac{1}{2}\Delta\Sigma + L_q = \frac{1}{2}\frac{3n_f}{3n_f + 16} = 0.18$$

$$\Delta g + L_g = \frac{1}{2} \frac{16}{3n_f + 16} = 0.32$$

STAR forward upgrade

PHENIX forward upgrade

67