Recent QGP studies at LHC/RHIC and future plans at Fair/J-parc

ShinIchi Esumi
Univ. of Tsukuba

Contents
• Introduction
• Temperature
• Collective expansion
• Jet quenching
• Small system
• Beam energy scan
• Summary

QGP Seminar at JAEA, 13/May/2015, Tokai
ShinIchi Esumi, Univ. of Tsukuba
Quark Gluon Plasma (QGP)

to search for a new state of matter and to study property of matter
• Early universe, Neutron star
• Quark-hadron phase transition
• Non confined quark states
• Critical end point
Heavy-Ion collision simulation

High-temperature & density system
Quark Gluon Plasma

Nucleus A

Nucleus B
Relativistic Heavy-Ion Collider (RHIC)
Brookhaven National Lab. (BNL)
New York, USA

~ a few km
~ 200 GeV

Large Hadron Collider (LHC)
European Organization for Nuclear Study (CERN), Geneva, Switzerland

~ a few 10km
~ 5 TeV
Experiments at RHIC and LHC

PHENIX

ALICE

STAR

ATLAS

CMS
A+A central collision
A few – 10k particles in an event
Thermal freeze-out from spectra shape

The end of elastic interactions, where/when spectra are frozen.

\[T_{\text{eff}} = T_{\text{fo}} + 0.5 m \langle v_\perp \rangle^2 \]
Chemical Freeze-out from particle yield

\[
\rho_i = \gamma_s |s_i| \frac{g_i}{2\pi^2} T_{ch}^3 \left(\frac{m_i}{T_{ch}} \right)^2 K_2 \left(\frac{m_i}{T_{ch}} \right) \lambda_q Q_i \lambda_s s_i
\]

\[
\lambda_q = \exp \left(\frac{\mu_q}{T_{ch}} \right), \quad \lambda_s = \exp \left(\frac{\mu_s}{T_{ch}} \right)
\]

The end of inelastic interactions, where/when yield/ratio are frozen.

- \(T_{ch}\): Chemical freeze-out temperature
- \(\mu_q\): light-quark chemical potential
- \(\mu_s\): strangeness chemical potential
- \(\gamma_s\): strangeness saturation factor
- \(Q_i\): 1 for u and d, -1 for u and d
- \(s_i\): 1 for s, -1 for s
- \(g_i\): spin-isospin freedom
- \(m_i\): particle mass
- \(K_2\): the second-order modified Bessel function

Simple chemical freeze-out model remarkably well agrees with data.

\(<N_{\text{part}}> = 345 \pm 7\)
Thermal photon radiation from QGP

- Virtual and real photon measurements via internal and external conversion methods with electron pair measurements
- Real photon measurements with EMcal
- Initial temperature of 300-600 MeV via measured slope of 220-240 MeV
initial temperature from the energy density
Phase transition at critical temperature
Chemical freeze-out temperature
Thermal freeze-out temperature

History of temperature

Initial temperature from thermal photons 0.3~0.6GeV

charged particle multiplicity vs. dN_{ch}/dh

Radial flow

$\langle \beta \rangle$

T_{kin}

T_{ch}

T_{C}

(a)
Blast Wave model fitting to various particle species

QGP Seminar at JAEA, 13/May/2015, Tokai

ShinIchi Esumi, Univ. of Tsukuba
Comparison between beam energies

Temperature via thermal photon

Critical end point

Comparison between beam energies
Quark momentum distribution
--- extracted from multi-strange hadron ratio ---

\[
\begin{align*}
\Xi(p_T/3) & \quad \phi(p_T/2) \\
\frac{(\Omega + \Omega')}{2}(p_T/3) & \quad \phi(p_T/2)
\end{align*}
\]

Collective radial expansion
- during the partonic phase
- before the hadronic phase

Quark coalescence or recombination mechanism for the hadronization

QGP Seminar at JAEA, 13/May/2015, Tokai
Shinlchi Esumi, Univ. of Tsukuba
Number of quark scaling in elliptic flow
--- quark coalescence feature ---

Indication of quark flow (in partonic phase)

\[\frac{m_T - \text{mass}}{n_{q}} \]

QGP Seminar at JAEA, 13/May/2015, Tokai
Shinlchi Esumi, Univ. of Tsukuba
mass dependence of v_2 with hydro-model

More radial flow in data. Not enough radial flow in hydro, or hadronic afterburner.
Beam energy dependence of v_2 (increased radial flow)

Relative momentum shift of heavier particles (protons) are larger than light hadrons (pions), which is consistent with an increased radial flow.
Direct (thermal) photon v_2 and v_3

$v_n = \langle \cos n(\phi_{\text{particle}} - \Phi_{\text{plane}}) \rangle$
(n=2 : elliptic flow), (n=3 : triangular flow)

- comparable to hadron for both v_2 and v_3 at 2~3GeV/c
- significant contribution from photons from later stages (inconsistent with early photons from hotter period) --- direct photon puzzle
- flatter p_T dependence of v_2 at low p_T
High p_T direct photon as penetrating probe

<table>
<thead>
<tr>
<th>$p_T > 5$ GeV/c</th>
<th>hadron</th>
<th>γ^{dir}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{AA}</td>
<td>< 1</td>
<td>~ 1</td>
</tr>
<tr>
<td>v_2</td>
<td>> 0</td>
<td>~ 0</td>
</tr>
</tbody>
</table>

Relative yield with respect to a simple independent superposition of pp data:

$$R_{AA} = \frac{N (A+A)}{N_{coll} N(p+p)}$$

QGP Seminar at JAEA, 13/May/2015, Tokai

Shinlchi Esumi, Univ. of Tsukuba
Energy loss at high p_T and re-distribution of the lost-energy at low p_T at RHIC

prompt photon - hadron correlation
$N_{PTY} =$ associate hadron yield per trigger γ
$I_{AA} = N_{PTY}(AA) / N_{PTY}(pp)$
effect on bulk

Suppression in Low p_T
Enhancement in high p_T

QGP Seminar at JAEA, 13/May/2015, Tokai
Shinichi Esumi, Univ. of Tsukuba
Partonic energy loss and Jet quenching

RHIC-STAR

Reconstructed jet – hadron correlation
LHC CMS/ATLAS: Modification of Jet fragmentation

- re-distribution towards lower p_T particles
- re-distribution at larger angle

![Graph showing re-distribution](image)

CMS PbPb, $\sqrt{s_{NN}} = 2.76$ TeV

LHC CMS/ATLAS:
Modification of Jet fragmentation

QGP Seminar at JAEA, 13/May/2015, Tokai
Shinlchi Esumi, Univ. of Tsukuba
Symmetric di-jet in p+p and peripheral A+A
Asymmetric di-jet in central A+A

Tracks

Calorimeter Towers

Asymmetric di-jet in central A+A

Run Number: 169136, Event Number: 1395684
Date: 2010-11-13 02:17:43 CET

ShinIchi Esumi, Univ. of Tsukuba
Jet asymmetry: A_J

$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$

$E_{T1} > 100$ GeV

$E_{T2} > 25$ GeV

Peripheral Pb+Pb → Central Pb+Pb

$A_J = \frac{(E_{T1} - E_{T2})}{(E_{T1} + E_{T2})}$

$
\Delta \phi = \phi_1 - \phi_2
$

A_j measurement at RHIC-STAR

- similar effect with smaller jet cone $R \sim 0.2$ at RHIC
- lower jet energy than LHC, smaller effect than LHC
- mostly recovered jet energy within larger jet cone $R \sim 0.4$

\[
A_j = \frac{P_{T,1} - P_{T,2}}{P_{T,1} + P_{T,2}}
\]

Anti-k_T $R=0.2$, $p_T,>16$ GeV & $p_T,>8$ GeV with $p_T^{cut}>2$ GeV/c

Anti-k_T $R=0.4$, $p_T,>20$ GeV & $p_T,>10$ GeV with $p_T^{cut}>2$ GeV/c

The difference is mostly gone.
Systematic test of energy loss and redistribution with photons, jets and hadrons

These two effects (energy loss and redistribution) can not be clearly separated experimentally!

Jet reconstruction is to recover the lost energy to get the original parton energy.

Jet as a control tool to define path length

Closer and closer to the initial parton energy

more and more surface bias given by energy loss
Jet-medium interaction: hard-soft interplay

Jet axis dependence with respect to geometry

$\Delta \phi$ vs $\phi_{\text{Jet}} - \Phi_{\text{R.P.}}$

$\Delta \eta$ vs η_{Jet}
Higher order event anisotropy --- v_3 ---

black-disk collision, sign-flipping v_3 like v_1
initial geometrical fluctuation, no-sign-flipping v_3

Reaction Plane (x-z)
Elliptic and Triangular expansion and freeze-out geometry

Elliptic and Triangular expansion: v_2, v_3

Elliptic and Triangular shape: $R^{HBT}_{\Phi_2}, R^{HBT}_{\Phi_3}$

QGP Seminar at JAEA, 13/May/2015, Tokai

Shinlchi Esumi, Univ. of Tsukuba
Event shape selection $Q_2 (\sim v_2)$

Relation of $\varepsilon_2^{\text{initial}} - v_2 - \varepsilon_2^{\text{final}}$ for a given centrality.

2-particle correlation

Flow BG subtracted jet correlation

$\varepsilon_{\text{final}}$ via HBT interferometry

PHENIX, QM14

ATLAS, QM14

QGP Seminar at JAEA, 13/May/2015, Tokai

Shinlchi Esumi, Univ. of Tsukuba
A+A collision : a large system

\[\text{p+p collision : a small system} \]

LHC-ALICE

LHC-CMS

high temperature and density system \(\rightarrow \) small and high multiplicity system

Probability distribution of event with “n” particles production

estimated initial energy density distribution in central A+A collision

\[n : \text{particle multiplicity} \]
Two particle $\Delta\phi-\Delta\eta$ correlation

(b) MinBias, $1.0\text{GeV/c} < p_T < 3.0\text{GeV/c}$

QGP Seminar at JAEA, 13/May/2015, Tokai

Shinichi Esumi, Univ. of Tsukuba
minimum bias p+p events

high multiplicity p+p events

(b) MinBias, 1.0GeV/c<p_T<3.0GeV/c

(d) N>110, 1.0GeV/c<p_T<3.0GeV/c

- inter-correlation between di-jets
- correlated multi-parton interactions
- collective behavior in small and dense system

QGP Seminar at JAEA, 13/May/2015, Tokai

Shinlchi Esumi, Univ. of Tsukuba
CMS Preliminary

\[p+\text{A collisions} \]

Initial-state geometry +
collective expansion

\[A+A \text{ collisions} \]

QGP Seminar at JAEA, 13/May/2015, Tokai

Shinlchi Esumi, Univ. of Tsukuba
LHC p+Pb centrality dependence

CMS Preliminary
\[pPb \sqrt{s_{NN}} = 5.02 \text{ TeV} \]
\[1 < p_T < 3 \text{ GeV/c} \]

- \(N_{\text{trig}}^{\text{offline}} \geq 110 \)
- \(35 \leq N_{\text{trig}}^{\text{offline}} < 90 \)
- \(90 \leq N_{\text{trig}}^{\text{offline}} < 110 \)
- \(N_{\text{trig}}^{\text{offline}} < 35 \)
100 billion (1.78 pb⁻¹) sampled minimum bias events from high-multiplicity trigger

High multiplicity
pp collisions

LHC-CMS

Jet1 peaked at $p_T = 2\sim4$ GeV/c (ridge region $|\Delta\eta| = 2\sim4$)

No ridge when correlating to high p_T particles!

QGP Seminar at JAEA, 13/May/2015, Tokai
Shin'ichi Esumi, Univ. of Tsukuba
Elliptic flow in small system?

* New $^3\text{He}+\text{Au}$ collision data from RHIC-RUN14
* $p+p$, $p+\text{Al}$, $p+\text{Pb}$ in Run15 will come

Glauber model

* New $^3\text{He}+\text{Au}$ collision data from RHIC-RUN14
* $p+p$, $p+\text{Al}$, $p+\text{Pb}$ in Run15 will come

$C(\Delta\phi)$
RHIC beam energy scan program
--- from high-temperature to high density ---
Directed flow v_1

- strong anti-flow of pion (and p-bar)
- small but significant anti-flow of proton
- sign change of v_1 slope around 10GeV
- minimum around 10-20GeV

J. Brachmann et al., PRC 61, 24909 (2000).
Beam energy dependence of v_2 and v_3

Smooth trend (not not?) of v_2 and v_3 with beam energy

Beam energy dependence of 2-particle interferometry measurement (HBT effect)

arXiv:1410.2559

QGP Seminar at JAEA, 13/May/2015, Tokai

Shinlchi Esumi, Univ. of Tsukuba
Local parity violation in a strong magnetic field

Fluctuation of conserved quantity vs beam energy

- Higher order moments (σ, S, κ) of net-baryon (net-proton) and net-charge distribution
- Non-monotonic behavior is expected around Critical Point.

QGP Seminar at JAEA, 13/May/2015, Tokai

Shinlchi Esumi, Univ. of Tsukuba
Patrick Huck, QM14

M_{ee}^{inv.} spectra and direct $\gamma^{thermal}$ from STAR experiment

Chi Yang, QM14

QGP Seminar at JAEA, 13/May/2015, Tokai

Shinlchi Esumi, Univ. of Tsukuba
sPHENIX at RHIC-BNL (New York, USA)

ALICE at LHC-CERN for Luminosity upgrade (Geneva, Switzerland)

Di-jet calorimeter
Forward calorimeter
High-speed read-out

FAIR at GSI (Darmstadt, Germany)

J-PARC at JAEA/KEK for heavy-ion collisions (Tokai, Japan)
Summary

from SPS to RHIC, LHC

• Temperature
• Collective expansion
• Jet quenching
• Small system
• Beam energy scan

slide from H. Sako, ATHIC14, Aug/2014, Osaka