March 18, 2015

S-2Sスペクトロメーターを 用いたマルチ・ストレンジネ ス多体系の精密分光

永江 知文京都大学

Contents

- \cdot Introduction to S=-2 Systems
 - · Double A hypernuclei
 - · Ξ hypernuclei
- · J-PARC E05 experiment
 - · Pilot run with SKS
 - \cdot S-2S
 - beyond E05
- · Summary

S=-2 World

Energy Spectrum of S=-2 systems

Double- Λ Hypernuclei

"Nagara" event; ⁶He

- Uniquely identified
- ▲B_^=0.67±0.17 MeV

J.K. Ahn et al., PRC 88 (2013) 014003.

smaller than before (~4 MeV)

KEK E373

H. Takahashi et al., PRL87, (2001) 212502.

Double-A predicted by Hiyama

E-Nucleus potential ?

Chemical Potential:

$$\mu_B = m_B + \frac{k_F^2}{2m_B} + \frac{U(k_F)}{U(k_F)}$$

Experimental situations before 1990

Ξ 's binding energy

⁸-He: 5.9 ± 1.2 MeV^[1] ¹¹₋B: 9.2 ± 2.2 MeV^[2] ¹³₋C: 18.1 ± 3.2 MeV^[3] 15 ₌C: 16.0 ± 4.7 MeV ^[4] 17 _0: 16.0 ± 5.5 MeV^[4] ²⁸-Al: 23.2 ± 6.8 MeV^[4]

50 µ C.B.Dover and A.Ga π ⁴He $^{\rm 5}{\rm He}$ K ¹⁰Be ^{⊾1}H

 $V_{0\Xi} = 24 \pm 4 \text{ MeV} (r_0 = 1.1 \text{ fm})$ $V_{0\Xi} = 21 \pm 4 \text{ MeV} (r_0 = 1.25 \text{ fm})$

G.A.Lalazissis et al. (1989)

 $V_{0E} = 22 \,\,{\rm MeV}$

[1]D.H.Wilkinson *et al.*, *PRL* **3** (1959)8 [2]J.Catala et al., Proc. Int. Conf. on Hypernuclear Physics, Argonne, Illinois vol.2, p.758 (1969) [3]A.S.Mondal et al., Nuovo Cimento 54A(1979)3 [4]A.Beckdolff et al., PL26B(1968)3

KEK E224

Counter experiment at KEK T.Fukuda et al., PRC 58 (1998) 2

(The first direct measurement in the missing mass spectrum.)

- 1. Differential cross section (E_{Ξ} <7 MeV) comparison with theory
- 2. Distribution shape analysis.

BNL E885

- not clear evidence of Ξhypernuclear bound state.
 - * because of limited mass resolution
- * suggest weakly attractive potential of -14 MeV depth.
 - by shape analysis and counts in bound region, compared with DWIA calc.
- # 89±14 nb/sr (<8deg.); 42±5 nb/sr (<14deg.)</p>

P.Khaustov et al., PRC61(2000)054603

BNL E885

Kiso Event in E373

■ B_Ξ = 1.11-4.38 MeV

Overall scanning for old emulsion $\rightarrow \Xi^- + {}^{14}N \Rightarrow {}^{10}_{\Lambda}Be + {}^{5}_{\Lambda}He$ was uniquely identified^[1]!!

"KISO" event

- K. Nakazawa et al., KEK E373 \cdot deeply bound $\Xi\text{-}^{14}\text{N}$ system
 - $\cdot \Xi^{+14}N \rightarrow {}^{10}\Lambda Be + {}^{5}\Lambda He$
 - · B_≡=1.11~4.38 MeV ± Γ/2
 - \cdot Well beyond the atomic binding of 0.17 MeV

- $\cdot \equiv hypernuclei do exist !$
- Urgency :
 - · Measurement of $Re(V_{\Xi})$
 - · $\Gamma \equiv N A \land ?$

Entrance to the S=-2 World

Doorway Reaction: $K \rightarrow K + \Xi \rightarrow$ at 1.8 GeV/c

How to produce S=-2 hypernuclei?

Spectroscopic Study of Ξ -Hypernucleus,

- $^{12}\Xi$ Be, via the $^{12}C(K^-,K^+)$ Reaction J-PARC E05
- Discovery of Ξ -hypernuclei as a peak(s)
- Measurement of Ξ -nucleus potential depth and width of ${}^{12}\Xi$ Be

S=-1 S=-2 (Multi-Strangeness System)

T. Nagae et al.

Purpose of E05

ΞN Interaction: almost no information

- Attractive of Repulsive ? → Potential depth
- $\exists N \rightarrow \land \land$ conversion ? \rightarrow Conversion width
- Isospin dependence ?

S-2S

(K⁻,K⁺) Spectroscopy @J-PARC

- K⁻+p→K⁺+Ξ⁻ @~1.8 GeV/c
- S-2S: (2010-2015)
 - Acceptance~60 msr
 - $\Delta p/p < 5 \times 10^{-4}$ (FWHM)
 - ΔE=1.5 MeV

	Acceptance ΔΩ (msr)	Energy Resolution ΔE (MeV)		
BNL	19	14		
SKS+	25	3		
S-2S	60	1.5		

Expected ¹²_±Be Spectrum

U₌ in Recent Nijmegen Models

Table 3. $U_{\Xi}(\rho_0)$ and partial wave contributions. Conversion width Γ_{Ξ} .

	T	${}^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	^{3}P	$U_arepsilon$	Γ_{Ξ}
08a	0	6.0	-1.0	-0.3	-2.1		
	1	8.5	-28.0	0.6	-3.8	-20.2	5.8
08a'	0	5.6	-1.1	-0.3	-2.2		
	1	8.4	-21.5	0.6	-3.9	-14.5	7.0
08b	0	2.4	1.9	-0.6	-2.0		
	1	9.1	-37.8	0.6	-5.4	-31.8	1.2
04d	0	6.4	-19.6	1.1	-2.2		
	1	6.4	-5.0	-1.0	-4.8	-18.7	11.3

Figure 6: DWIA spectra with NHC-D and Ehime.

Figure 7: DWIA spectra with ESC04d and ESC08a.

229

E05 with S-2S

- Grant-In-Aid for
 Specially promoted
 research: 2011 –
 2015, Total ~\$3M
- * 60 msr, $\Delta p/p=0.05\%$ $\rightarrow \Delta M=1.5 \text{ MeV}$
- ★ Construction of S-2S(QQD): ~3 years
 ★Installation in 2016
 ★ Data taking in 2017 with > 100 kW !!

S-2S Construction

E05 Pilot Run

- · K1.8 beam line with SKS (E13 setup')
 - · Two AC's(p, π^+) at the entrance of SKS
 - · $CH_2(K^-,K^+)$ 9.3g/cm² $\rightarrow \Delta M=5$ MeV_{FWHM}
- Two weeks of beam time
 - Detector tuning 1 day
 - • p(K⁻,K⁺) Ξ⁻@1.5-1.9 GeV/c 2 days
 - · ¹²C(K⁻,K⁺) >10 days

Good acceptance and energy resolution

· $\Delta \Omega = 110 \text{ msr}$

 $\Delta E=5$ MeVFWHM

Comparison of Spectrometers

	ΔΩ ΔΕ (msr) (MeV)		
BNL	19	14	
SKS'	110	5	
S-2S	60	1.5	

Background triggers 10⁵ K-/spill, CH₂ 9.3 g/cm²

1. K⁻ decay in flight (GEANT4)

•Total 180 (K⁻ $\rightarrow \pi^{-}\pi^{-}\pi^{+}$: 110)

2. Reactions in target (JAM code simulation)

•Total 300 (p: 230, π⁺: 30)
 with AC1,2:
 p veto 50%, pion veto 90%
 •Total 160 (p: 115, π⁺: 3)

 $12C(K^{-},K^{+})$

Woods-Saxon type potential: V=-14 MeV

$12C(K^{-},K^{+})$

229

Theoretical Models

· ESC08, ESC04, EHIME

T. Motoba, S. Sugimoto / Nuclear Physics A 835 (2010) 223-230

Figure 6: DWIA spectra with NHC-D and Ehime.

Figure 7: DWIA spectra with ESC04d and ESC08a.

~50 events/two weeks

$K^-p \rightarrow K^+ \equiv -$

- Old Data in 60's
 - 10~40 events at forward
- · Pilot Run

900-1800 events
 at Five Рк-

Yield Estimations

- \cdot ¹²C : 3x10⁵ K⁻/spill, 6s cycle
 - · $d\sigma/d\Omega$ ~42 nb/sr, Ω =0.11 sr
 - $\cdot \rightarrow 3.4$ /day ~50 /two weeks
- · p:d σ /d Ω ~35 μ b/sr
 - $\cdot \rightarrow 1,800/shift$

Kinematics of p(K⁻,K⁺) Ξ @1.8 GeV/c

Fig. 2.3. The momentum q_Y transferred to the hyperon Y as a function of the projectile momentum $p_{\text{proj}} = p_a$ in the reaction $aN \to Yb$ at $\theta_{b,L} = 0^\circ$.

Missing Mass Resolution

$$\frac{M^{2}}{\Delta M^{2}} = (E_{B} + m_{T} - E_{S})^{2} - (p_{B}^{2} - p_{S}^{2})^{2}$$

$$\frac{M^{2}}{\Delta M^{2}} = \left(\frac{\partial M}{\partial p_{B}}\right)^{2} \Delta p_{B}^{2} + \left(\frac{\partial M}{\partial p_{S}}\right)^{2} \Delta p_{S}^{2} + \left(\frac{\partial M}{\partial \theta}\right)^{2} \Delta \theta^{2} + \Delta E_{\text{strag.}}^{2}$$

$$\frac{\Delta \theta \text{ 2mrad } MeV}{\Delta \theta}$$

$$\frac{\Delta \theta \text{ 2mrad } MeV}{\Delta \theta}$$

$$\frac{\Delta E_{\text{strag}} \leftarrow \text{ Target thickness}}{1 \text{ MeV} \leftarrow 3 \text{ g/cm}^{2}}$$

$$\frac{\Delta e_{\text{strag}}}{1 \text{ MeV} \leftarrow 3 \text{ g/cm}^{2}}$$

$$\frac{\Delta e_{\text{strag}}}{2 \text{ MeV} \leftarrow 6 \text{ g/cm}^{2}}$$

$$\frac{\partial M}{\partial p_{B}} = \frac{1}{M}[\beta_{B}(m_{T} - E_{S}) + p_{S}\cos\theta] = \theta = 5^{\circ} = 0 \text{ MeV}}$$

$$\frac{\partial M}{\partial \theta} = -\frac{1}{V}[\beta_{S}(m_{T} + E_{B}) - p_{B}\cos\theta] = 0 \text{ MeV}}$$

$$\frac{\partial M}{\partial p_S} = -\frac{1}{M} [\beta_S(m_T + E_B) - p_B \cos \theta] \xrightarrow{} E_{hyp} = 0 \text{ MeV} \xrightarrow{} Beam \quad 0.65 \quad 0.90 \quad 0.93 \quad 0.96 \quad 0.94 \quad 0.94$$

Yield Estimation

	SKSminus	S-2S
Acceptance	110 msr	55 msr
K ⁺ survival rate	0.6	0.4
Cross section	42 nb/sr (θ<14deg)	89 nb/sr (θ<8deg)
Beam intensity	4.5×10 ⁵ /6s	9×10 ⁵ /4s
Target	9.3 g/cm ² CH ₂	3 g/cm ² ¹² C
Yield [/month]	140 events	110 events

- Notes
 - Efficiency = 0.7
 - Differencial cross section ← result of the BNL-E885 (*Khaustov et al.*)

S-2S @K1.8

Magnets

- Three normal conducting magnets
- Q1,D1 \rightarrow Newly constructed
- Q2 \rightarrow Modification of pole and coil from old magnet

Q1 magnet

- Vertical focus
- 2.4×2.4×0.88 m³
- Aperture 31 cm
- Total weight 37 ton
- 8.7 T/m

Build up

Field Calculation

3D electromagnetic analysis with Opera-3d/TOSCA

Q2 magnet

- Horizontal focus
- 2.1×1.54×0.5 m³
- Aperture 36 cm
- Total weight 12 ton
- 5.0 T/m (measurement)

Completed in 2014.3

Coll m

D1 magnet

• 1.5 T = 70 deg. bend @1.37 GeV/c

2014.3

Painted

- Gap 80×32 cm²
- Weight 86 ton

Magnets in KEK

Momentum Resolution

dp/p 5~6×10⁻⁴ (FWHM)

Background Distributions

Momentum Distribution at S-2S downstream

Timeline

Ready for installation in JFY2015

	201	4.9 20	5.4	
Magnet				
Q1,Q2	Completed ('13/'14)	Magnet Table		
D1	Yoke only	Coil Mounted	Field measurement	
Drift Chamber				
SDC1	Ready			
SDC2		Design Production	Performance check	
SDC3,4	Almost ready	Design/production PreAmpBoard Repairment on some parts/c		
Trigger Counters				
TOF	Materials are ready	Design of support frame	Setup	
AC	Ready	Performance check		
WC	Prototypes Test experiments	Performance check Design actual version	Fabrication	
	@J-PARC&ELPH		Others: HeBag	

Physics beyond E05

- Spin dependence in light Ξ hypernuclei
 ⁷Li(K⁻, K⁺)_Ξ⁷H; annΞ⁻ Lightest Ξ hypernucleus ?
 ¹⁰B(K⁻, K⁺)_Ξ¹⁰Li; aanΞ⁻
- Heavy Ξ hypernuclei spectroscopy
 Coulomb-Assisted bound states ⁸⁹Y(K⁻, K⁺)

(K⁻,K⁺) Spectroscopy

O2 MeVFWHM resolution

~6 events/day/MeV for 50 msr, 2g/cm²-thick Pb ~20 days

Coupling between Ξ hypernuclei and double- Λ hypernuclei

Summary

· S-2S construction is under way.

• Ready for Installation in JFY2015.

 Pilot run of E05 was proposed for the Fall run in 2015 with SKS.

Elementary cross section + ¹²C(K⁻,K⁺)

Backup slides

Expected ¹²_±Be Spectrum

Background Protons

· K⁻p/n \rightarrow pK, p π K, hyperon decays

(GeV/c)

Decay in flight

- K⁻ decay rate ~20%
 - · K⁻ $\rightarrow \pi^{-}\pi^{-}\pi^{+}$ (5.6%)
 - $\cdot \rightarrow \pi^{-}\pi^{0}, \ \mu^{-}\nu$; SKS Yoke

U₌ in Recent Nijmegen Models

Table 3. $U_{\Xi}(\rho_0)$ and partial wave contributions. Conversion width Γ_{Ξ} .

	T	${}^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	^{3}P	$U_arepsilon$	Γ_{Ξ}
08a	0	6.0	-1.0	-0.3	-2.1		
	1	8.5	-28.0	0.6	-3.8	-20.2	5.8
08a'	0	5.6	-1.1	-0.3	-2.2		
	1	8.4	-21.5	0.6	-3.9	-14.5	7.0
08b	0	2.4	1.9	-0.6	-2.0		
	1	9.1	-37.8	0.6	-5.4	-31.8	1.2
04d	0	6.4	-19.6	1.1	-2.2		
	1	6.4	-5.0	-1.0	-4.8	-18.7	11.3

Coupling between Ξ hypernuclei and double- Λ hypernuclei

 \Box sensitive to EN-AA coupling strength.

Physics beyond E05

- Spin dependence in light Ξ hypernuclei
 ⁷Li(K⁻, K⁺)_Ξ⁷H; annΞ⁻ Lightest Ξ hypernucleus ?
 ¹⁰B(K⁻, K⁺)_Ξ¹⁰Li; aanΞ⁻
- Heavy E hypernuclei spectroscopy
 Coulomb-Assisted bound states ⁸⁹Y(K⁻, K⁺)