Determination of $\bar{K}N$ compositeness of the $\Lambda(1405)$ resonance from its radiative decay

Takayasu SEKIHARA (RCNP, Osaka Univ.)

in collaboration with

Shunzo KUMANO (KEK)

Contents

1. Introduction
2. Compositeness
3. Formulation of $\Lambda(1405)$ radiative decay
4. Radiative decay width vs. compositeness
5. Summary
1. Introduction
1. Introduction

++ Hadrons ++

- Hadrons --- Interact with each other by strong interaction.

- They should be “color” singlet.

- Why we know that baryons (mesons) are composed of qqq ($q\bar{q}$) ?
 - We can construct color singlet states minimally from qqq and $q\bar{q}$.
 --- QCD, fundamental theory of strong interaction, restricts observables to be color singlet.

- Excellent successes of constituent quark models.

 --- Classifications with qqq and $q\bar{q}$, mass spectra, magnetic moments, transition amplitudes, ...

 (Parton distribution inside nucleons. ...)
++ Exotic hadrons and their structure ++

- **Exotic hadrons** --- not same quark component as ordinary hadrons
 = not qqq nor $q\bar{q}$. --- They should be "**color**" singlet as well.

--- Actually **some hadrons cannot be described by the quark model**.

- **Do they really exist?**
- If they do exist, **how are their properties?**
 --- Can we extend **constituent quarks to penta- and tetra-quarks?**
 --- How is the "**constituent**" gluons?
- If they do not exist, **what forbid their existence?**

<- We know very few about hadrons (and **dynamics of QCD**).
1. Introduction

++ Exotic hadrons and their structure ++

- Exotic hadrons --- not same quark component as ordinary hadrons
 = not qqq nor $q\bar{q}$. --- They should be "color" singlet as well.
 --- Compact multi-quark systems, glueballs, hadronic molecules, ...

- Candidates: $\Lambda(1405)$, the lightest scalar mesons, XYZ, ...

- $\Lambda(1405)$ --- Mass = 1405.1 $^{+1.3}_{-1.0}$ MeV, width = 1/(life time) = 50 ± 2 MeV, decay to $\pi\Sigma$ (100 %), $I (J^P) = 0 (1/2^-)$.

\[\Lambda(1405) 1/2^- \]

\[I(J^P) = 0(\frac{1}{2}^-) \]

\[
\begin{array}{ll}
\text{Mass} & m = 1405.1^{+1.3}_{-1.0} \text{ MeV} \\
\text{Full width} & \Gamma = 50 \pm 2 \text{ MeV} \\
\text{Below } & \overline{K}N \text{ threshold} \\
\hline
\Lambda(1405) \text{ DECAY MODES} & \frac{\Gamma_i}{\Gamma} & p \text{ (MeV/c)} \\
\Sigma \pi & 100 \% & 155
\end{array}
\]
1. Introduction

++ Exotic hadrons and their structure ++

- Exotic hadrons --- not same quark component as ordinary hadrons
 = not qqq nor $q\bar{q}$. --- They should be “color” singlet as well.
- Compact multi-quark systems, glueballs, hadronic molecules, ...
 ◦ Candidates: $\Lambda(1405)$, the lightest scalar mesons, XYZ, ...

- $\Lambda(1405)$ --- Mass = 1405.1 $^{+1.3}_{-1.0}$ MeV, width = 1/(life time) = 50 \pm 2 MeV,
 decay to $\pi\Sigma$ (100 %), $I (j^p) = 0$ (1/2--). Particle Data Group
- Why is $\Lambda(1405)$ the lightest excited baryon with $j^p = 1/2--$?
 --- $\Lambda(1405)$ contains a strange quark, which should be ~ 100 MeV
 heavier than up and down quarks.
 ◦ Strongly attractive $\bar{K}N$ interaction in the $I = 0$ channel.
 -- $\Lambda(1405)$ is a $\bar{K}N$ quasi-bound state ??? Dalitz and Tuan ('60), ...
1. Introduction

++ Dynamically generated $\Lambda(1405)$ ++

- The chiral unitary model (ChUM) reproduces low-energy Exp. data and dynamically generates $\Lambda(1405)$ in meson-baryon degrees of f.

 Kaiser-Siegel-Weise (’95), Oset-Ramos (’98), Oller-Meissner (’01), Jido et al. (’03), ...

\[T_{ij}(s) = V_{ij} + \sum_{k} V_{ik} G_k T_{kj} \]

--- Spontaneous chiral symmetry breaking + Scattering unitarity.

$\Lambda(1405)$ in $KN-\pi\Sigma-\eta\Lambda-K\Xi$ coupled-channels.

- Prediction: Two poles for $\Lambda(1405)$ are dynamically generated.

--- One of the poles (around 1420 MeV) originates from KN bound state.

1. Introduction

++ Determine hadron structures ++

- How can we determine the structure of hadrons in Exp.?

\[|\Lambda(1405)\rangle = C_{uds} |uds\rangle + C_{\bar{K}N} |\bar{K}\rangle \otimes |N\rangle + C_{uud\bar{u}s} |uud\bar{u}s\rangle + \cdots \]

- **Spatial structure (= spatial size).**
 --- **Loosely bound hadronic molecules** will have large spatial size.

- **“Count” quarks inside hadron by using some special condition.**
 --- Scaling law for the quark counting rule in high energy scattering.

- **Compositeness** \(X\) = amount of two-body state inside system.
 cf. Deuteron is a proton-neutron bound state, not elementary.

2. Compositeness
2. Compositeness

++ Uniqueness of hadronic molecules ++

- Hadronic molecules seem to be unique, because they would have large spatial size compared to other (compact) hadrons.

- The uniqueness comes from the fact that hadronic molecules are composed of hadrons themselves, which are color singlet.

--> This fact leads to various quantitative and qualitative differences of hadronic molecules from other compact hadrons.

- Large spatial size.

- Theoretical prediction of existence around two-body threshold.

- Compositeness defined from two-body wave functions.
2. Compositeness

++ Physical meaning of compositeness ++

- **Compositeness** \((X) \) = amount of the two-body components in a resonance as well as a bound state.

- **For \(\Lambda(1405) \):**

- Compositeness can be defined as the contribution of the two-body component to the normalization of the total wave function.

\[
\langle \Lambda(1405) | \Lambda(1405) \rangle = X_{KN} + X_{\pi\Sigma} + \cdots + Z = 1
\]

--- \(K, N \) are color singlet and hence observables, but quarks are not.

(Large composite \(\leftrightarrow X \sim 1 \))
2. Compositeness

++ Compositeness, model calculation ++

- Compositeness \((X) \) = amount of the two-body components in a resonance as well as a bound state.

\[X \sim 1 \quad \text{(Large composite } \leftrightarrow X \sim 1) \]

- Recently compositeness has been discussed in the context of the chiral unitary model.

--- **Elementariness**

\[Z = 1 - \sum_i X_i \]

--- **i-channel compositeness** is expressed as:

\[X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}}) \]

- **Cut-off is not needed for** \(dG/d\sqrt{s} \).

\[G_i(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_k^2 + i\epsilon} \frac{1}{(P - q)^2 - m_k'^2 + i\epsilon} \]

2. Compositeness

++ Compositeness, model calculation ++

- Compositeness \((X) \) = amount of the two-body components in a resonance as well as a bound state.

\[X \sim 1 \text{ (Large composite } \leftrightarrow X \sim 1) \]

--- Elementariness

- Recently compositeness has been discussed in the context of the chiral unitary model.

--- \(i \)-channel compositeness is expressed as:

\[
X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})
\]

-- Compositeness can be determined from the coupling constant \(g_i \) and the pole position \(W_{\text{pole}} \).

Seminar @ ASRC, JAEA (May 21st, 2014)
2. Compositeness

++ Compositeness, model calculation ++

- Compositeness \((X)\) = amount of the two-body components in a resonance as well as a bound state.

\[
\text{(Large composite } \longleftrightarrow X \sim 1)\]

--- Elementariness

- Recently compositeness has been discussed in the context of the chiral unitary model.

--- \(i\)-channel compositeness is expressed as:

\[
X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})
\]

- Compositeness of \(\Lambda(1405)\) in the chiral unitary model:

--> Complex values, which cannot be interpreted as the probability.

<table>
<thead>
<tr>
<th>(\Lambda(1405)), lower pole</th>
<th>(\Lambda(1405)), higher pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_{\text{pole}})</td>
<td>(1391 - 66i) MeV</td>
</tr>
<tr>
<td>(X_{K^0 N^0})</td>
<td>(-0.21 - 0.13i)</td>
</tr>
<tr>
<td>(X_{\pi^0 \Sigma^0})</td>
<td>(0.37 + 0.53i)</td>
</tr>
<tr>
<td>(X_{\eta \Lambda})</td>
<td>(-0.01 + 0.00i)</td>
</tr>
<tr>
<td>(X_{K^0 \Xi})</td>
<td>(0.00 - 0.01i)</td>
</tr>
<tr>
<td>(Z)</td>
<td>(0.86 - 0.40i)</td>
</tr>
</tbody>
</table>

2. Compositeness

++ Compositeness, model calculation ++

- **Compositeness** \((X)\) = amount of the two-body components in a resonance as well as a bound state.

\[(\text{Large composite } \leftrightarrow X \sim 1)\]

--- Elementariness

- Recently compositeness has been discussed in the context of the chiral unitary model.

--- \(i\)-channel compositeness is expressed as:

\[X_i = -g_i^2 \frac{dG_i}{d \sqrt{s}} (\sqrt{s} = W_{\text{pole}})\]

- Compositeness of \(\Lambda(1405)\) in the chiral unitary model:

\(\rightarrow\) Large \(KN\) component for (higher) \(\Lambda(1405)\), since \(X_{KN}\) is almost unity.

\[Z = 1 - \sum_i X_i\]

<table>
<thead>
<tr>
<th>(\Lambda(1405)), lower pole</th>
<th>(\Lambda(1405)), higher pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_{\text{pole}})</td>
<td>1391 – 66i MeV</td>
</tr>
<tr>
<td>(X_{\bar{K}N})</td>
<td>-0.21 – 0.13i</td>
</tr>
<tr>
<td>(X_{\pi\Sigma})</td>
<td>0.37 + 0.53i</td>
</tr>
<tr>
<td>(X_{\eta\Lambda})</td>
<td>-0.01 + 0.00i</td>
</tr>
<tr>
<td>(X_{\bar{K}\Xi})</td>
<td>0.00 – 0.01i</td>
</tr>
<tr>
<td>(Z)</td>
<td>0.86 – 0.40i</td>
</tr>
</tbody>
</table>

2. Compositeness

++ Compositeness in experiments ++

- How can we determine compositeness of $\Lambda(1405)$ in experiments?

\[X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}}) \]

--- Compositeness can be evaluated from the coupling constant g_i and the pole position W_{pole}.

- Exercise: $\pi\Sigma$ compositeness.
 - Pole position from PDG values:
 \[W_{\text{pole}} = M_{\Lambda(1405)} -- i \Gamma_{\Lambda(1405)} / 2 \text{ with } M_{\Lambda(1405)} = 1405 \text{ MeV}, \Gamma_{\Lambda(1405)} = 50 \text{ MeV}. \]
 - Coupling constant $g_{\pi\Sigma}$ from $\Lambda(1405) \rightarrow \pi\Sigma$ decay width:
 \[\Gamma_{\Lambda(1405)} = 3 \times \frac{p_{\text{cm}}M_{\Sigma}}{2\pi M_{\Lambda(1405)}} |g_{\pi\Sigma}|^2 = 50 \text{ MeV} \]
 \[\rightarrow |g_{\pi\Sigma}| = 0.91. \]

---> From the compositeness formula, we obtain $|X_{\pi\Sigma}| = 0.19$.
--- Not small, but not large $\pi\Sigma$ component for $\Lambda(1405)$.

- Then, how is $\bar{K}N$ compositeness?
2. Compositeness

++ Compositeness in experiments ++

- How can we determine \(KN \) compositeness of \(\Lambda(1405) \) in Exp.?

- Pole position can be fixed from PDG values.

\[X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}}) \]

- Unfortunately, one cannot directly determine the \(KN \) coupling constant in Exp. in contrast to the \(\pi \Sigma \) coupling strength, because \(\Lambda(1405) \) exists just below the \(KN \) threshold (~1435 MeV).

- Furthermore, there are no direct model-independent relations between the \(KN \) compositeness and observables such as the \(K^- p \) scattering length, in contrast to the deuteron case.

--- The relation for deuteron is valid only for small \(B_E \).

---> Therefore, in order to determine the \(KN \) compositeness, we have to observe some reactions which are relevant to the \(KN \) coupling constant. --- Such as the \(\Lambda(1405) \) radiative decay!
3. Formulation of $\Lambda(1405)$ radiative decay
3. Formulation

++ Radiative decay of $\Lambda(1405)$ ++

- There is an “experimental” value of the $\Lambda(1405)$ radiative decay:
 \[
 \Gamma(\Lambda(1405) \rightarrow \Lambda\gamma) = 27 \pm 8 \text{ keV}, \quad \text{PDG; Burkhardt and Lowe, Phys. Rev. C44 (1991) 607.}
 \]
 \[
 \Gamma(\Lambda(1405) \rightarrow \Sigma^0\gamma) = 10 \pm 4 \text{ keV or } 23 \pm 7 \text{ keV.}
 \]

- There are also several theoretical studies on the radiative decay:

--- Structure of $\Lambda(1405)$ has been discussed in these models, but the $\overline{K}N$ compositeness for $\Lambda(1405)$ has not been discussed.

|-- Discuss the $\overline{K}N$ compositeness from the $\Lambda(1405)$ radiative decay! |
++ Formulation of radiative decay ++

- Radiative decay width can be evaluated from following diagrams:

- Photon emission from meson-baryon components inside $\Lambda(1405)$.

 --- Strictly, qqq or $qqqqq$ systems should have finite spatial size, so we may have to take into account the following diagram:

 but we neglect this diagram.

 The qqq or $qqqqq$ component inside $\Lambda(1405)$ should be small according to the failure of the quark model.
3. Formulation

++ Formulation of radiative decay ++

- Radiative decay width can be evaluated from following diagrams:

- Photon emission from *meson-baryon components* inside $\Lambda(1405)$.

--- Strictly, qqq or $qqqqq$ systems should have finite spatial size, so we may have to take into account the following diagram:

but we neglect this diagram.

<-- The qqq or $qqqqq$ component inside $\Lambda(1405)$ should be small according to the failure of the quark model.
3. Formulation

++ Formulation of radiative decay ++

- Radiative decay width can be evaluated from following diagrams:

- Each diagram diverges, but sum of the three diagrams converges due to the gauge symmetry.
 --- One can prove that the sum converges using the Ward identity.

- The radiative decay width can be expressed as follows:
 \[
 \Gamma_{Y^0 \gamma} = \frac{p'_{\text{cm}} M_{Y^0}}{\pi M_{\Lambda(1405)}} |W_{Y^0 \gamma}|^2
 \]
 with
 \[
 W_{Y^0 \gamma} \equiv e \sum_i g_i Q_{M_i} \tilde{V}_{iY^0} A_{iY^0}
 \]
 --- Sum of loop integrals A_{iY^0} and meson charge Q_{M_i}.
 --- \tilde{V}: Fixed by flavor $SU(3)$ symmetry.
3. Formulation

++ Formulation of radiative decay ++

- Radiative decay width can be evaluated from following diagrams:

- Each diagram diverges, but sum of the three diagrams converges due to the gauge symmetry.
 --- One can prove that the sum converges using the Ward identity.

- The radiative decay width can be expressed as follows:
 \[
 \Gamma_{Y^0\gamma} = \frac{p'_{\text{cm}} M_{Y^0}}{\pi M_{\Lambda(1405)}} |W_{Y^0\gamma}|^2
 \]
 with
 \[
 W_{Y^0\gamma} \equiv e \sum_i g_i Q_i M_i V_{iY^0} A_{iY^0}
 \]
 --- Coupling constant \(g_i \) appears as a model parameter!

 --> Radiative decay is relevant to the \(K\bar{N} \) coupling!

- For \(\Lambda(1405) \), \(K^- p \), \(\pi^{\pm} \Sigma^\mp \), and \(K^+ \Xi^- \) are relevant channels.
3. Formulation

++ Radiative decay in chiral unitary model ++

- **Taken from the coupling constant** g_i **from chiral unitary model**, one can evaluate **radiative decay width in chiral unitary model**.

Table 3. The radiative decay widths of the $\Lambda(1405)$ predicted by different theoretical models, in units of keV. The values denoted by “χPT” are the results obtained in the present study. The widths calculated for the low-energy pole and high-energy pole are separated by a comma.

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>χPT</th>
<th>$\Lambda(1405)$, lower pole</th>
<th>$\Lambda(1405)$, higher pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma \Lambda$</td>
<td>16.1, 64.8</td>
<td>$W_{\text{pole}} = 1391 - 66i$ MeV</td>
<td>$0.99 + 0.05i$</td>
</tr>
<tr>
<td>$\gamma \Sigma^0$</td>
<td>73.5, 33.5</td>
<td>$X_{KN} = -0.21 - 0.13i$</td>
<td>$0.99 + 0.05i$</td>
</tr>
<tr>
<td>$\gamma \Sigma^0$</td>
<td>60, 17</td>
<td>$X_{\pi \Sigma} = 0.37 + 0.53i$</td>
<td>$-0.05 - 0.15i$</td>
</tr>
<tr>
<td>$\gamma \Lambda$</td>
<td>18, 2.7</td>
<td>$X_{\eta \Lambda} = -0.01 + 0.00i$</td>
<td>$0.05 + 0.01i$</td>
</tr>
<tr>
<td>$\gamma \Sigma^0$</td>
<td>$X_{K \Xi} = 0.00 - 0.01i$</td>
<td>$0.00 + 0.00i$</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>$0.86 - 0.40i$</td>
<td>$0.00 + 0.09i$</td>
<td></td>
</tr>
</tbody>
</table>

- **$\Lambda\gamma$ decay mode**: Dominated by the $\bar{K}N$ component.
 - Larger $K^-p\Lambda$ coupling strength:
 - Large $\pi\Sigma$ cancellation:

 \[
 \tilde{V}_{K^-p\Lambda} = -\frac{D + 3F}{2\sqrt{3}f} \approx -\frac{0.63}{f}
 \]

 with

 \[
 Q_{\pi^+} = -Q_{\pi^-} = 1
 \]
3. Formulation
++ Radiative decay in chiral unitary model ++

- Taken from the coupling constant g_i from chiral unitary model, one can evaluate radiative decay width in chiral unitary model.

Table 3. The radiative decay widths of the $\Lambda(1405)$ predicted by different theoretical models, in units of keV. The values denoted by “UχPT” are the results obtained in the present study. The widths calculated for the low-energy pole and high-energy pole are separated by a comma.

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>$\gamma\Lambda$</th>
<th>$\gamma\Sigma^0$</th>
<th>$\eta\Lambda$</th>
<th>$K\Sigma^0$</th>
<th>$\pi\Sigma$</th>
<th>$\pi K\Xi^0$</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma\Lambda$</td>
<td>16.1, 64.8</td>
<td>18, 2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma\Sigma^0$</td>
<td>73.5, 33.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $\Sigma^0\gamma$ decay mode: Dominated by the $\pi\Sigma$ component.

- Smaller $K^-p\Sigma^0$ coupling strength:

- **Constructive $\pi\Sigma$ contribution:**

$$\tilde{V}_{K^-p\Sigma^0} = \frac{D - F}{2f} \approx \frac{0.17}{f}$$

$$\tilde{V}_{\pi^+\Sigma^-\Sigma^0} = -\tilde{V}_{\pi^-\Sigma^+\Sigma^0} = \frac{F}{f} \approx \frac{0.47}{f}$$
+++ Our strategy +++

- We evaluate the $\Lambda(1405)$ radiative decay width $\Gamma_{\Lambda\gamma}$ and $\Gamma_{\Sigma^0\gamma}$ as a function of the absolute value of the KN compositeness $|X_{KN}|$.

--- We can evaluate the $\Lambda(1405)$ radiative decay width when the $\Lambda(1405)$--meson-baryon coupling constant (model parameter) and the $\Lambda(1405)$ pole position are given.

--- $|X_{KN}|$ should contain information of the $\Lambda(1405)$ structure!

\[
\Gamma_{Y^0\gamma} = \frac{p'_{cm} M_{Y^0}}{\pi M_{\Lambda(1405)}} |W_{Y^0\gamma}|^2
\]

\[
W_{Y^0\gamma} \equiv e \sum_i g_i Q_{Mi} \tilde{V}_{iY^0} A_{iY^0}
\]
3. Formulation

++ Our strategy ++

- We evaluate the $\Lambda(1405)$ radiative decay width $\Gamma_{\Lambda\gamma}$ and $\Gamma_{\Sigma^0\gamma}$ as a function of the absolute value of the $\bar{K}N$ compositeness $|X_{\bar{K}N}|$.

--- We can evaluate the $\Lambda(1405)$ radiative decay width when the $\Lambda(1405)$-meson-baryon coupling constant (model parameter) and the $\Lambda(1405)$ pole position are given.

- $\Lambda(1405)$ pole position from PDG values:

 \[
 W_{\text{pole}} = M_{\Lambda(1405)} - i \frac{\Gamma_{\Lambda(1405)}}{2} \text{ with } M_{\Lambda(1405)} = 1405 \text{ MeV, } \Gamma_{\Lambda(1405)} = 50 \text{ MeV.}
 \]

- Assume isospin symmetry for the coupling constant g_i:

 \[
 g_{\bar{K}N} = g_{K-p} = g_{K^0_n}, \quad g_{\pi\Sigma} = g_{\pi^+\Sigma^-} = g_{\pi^-\Sigma^+} = g_{\pi^0\Sigma^0}
 \]

 and neglect $K\Xi$ component:

 \[
 g_{K+\Xi^-} = g_{K^0\Xi^0} = 0
 \]

- The coupling constant g_{KN} as a function of X_{KN} is determined from the compositeness relation:

 \[
 |X_{\bar{K}N}| = |g_{\bar{K}N}|^2 \left| \frac{dG_{K-p}}{d\sqrt{s}} + \frac{dG_{K^0_n}}{d\sqrt{s}} \right|_{\sqrt{s}=W_{\text{pole}}}
 \]
3. Formulation

++ Our strategy ++

- We evaluate the $\Lambda(1405)$ radiative decay width $\Gamma_{\Lambda\gamma}$ and $\Gamma_{\Sigma^0\gamma}$ as a function of the absolute value of the KN compositeness $|X_{KN}|$.

--- We can evaluate the $\Lambda(1405)$ radiative decay width when the $\Lambda(1405)$--meson-baryon coupling constant (model parameter) and the $\Lambda(1405)$ pole position are given.

- Coupling constant $g_{\pi\Sigma}$ from $\Lambda(1405) \rightarrow \pi\Sigma$ decay width:

$$\Gamma_{\Lambda(1405)} = 3 \times \frac{p_{cm} M_{\Sigma}}{2\pi M_{\Lambda(1405)}} |g_{\pi\Sigma}|^2 = 50 \text{ MeV}$$

$$\Rightarrow |g_{\pi\Sigma}| = 0.91.$$

- Interference between KN and $\pi\Sigma$ components (= relative phase between g_{KN} and $g_{\pi\Sigma}$) are not known.

$$\Rightarrow$$ We show allowed region of the decay width from maximally constructive / destructive interferences:

$$W^{\pm}_{Y^0\gamma} = e \left(|g_{\bar{K}N}| \times |\tilde{V}_{K-pY^0} A_{K-pY^0}| \pm |g_{\pi\Sigma}| \times |\tilde{V}_{\pi+\Sigma-Y^0} A_{\pi+\Sigma-Y^0} - \tilde{V}_{\pi-Y^0} A_{\pi-Y^0}| \right)$$

$$\Gamma_{Y^0\gamma} = \frac{p'_{cm} M_{Y^0}}{\pi M_{\Lambda(1405)}} |W_{Y^0\gamma}|^2$$
4. Radiative decay width vs. compositeness
4. Radiative decay vs. compositeness

++ $\Lambda(1405)$ radiative decay width ++
- We obtain allowed region of the $\Lambda(1405)$ radiative decay width as a function of the absolute value of the \overline{KN} compositeness $|X_{KN}|$.

--- $\Lambda(1405)$ pole position dependence is small (discuss later).
4. Radiative decay vs. compositeness

++ $\Lambda(1405)$ radiative decay width ++

- $\Lambda\gamma$ decay mode:
 Dominated by the $\overline{K}N$ component.

--- Due to the large cancellation between $\pi^+\Sigma^-$ and $\pi^-\Sigma^+$,
 allowed region for $\Lambda\gamma$ is very small and
 is almost proportional to $|X_{\overline{K}N}|$ ($\propto |g_{\overline{K}N}|^2$).

--> **Large $\Lambda\gamma$ width**
 = large $|X_{\overline{K}N}|$.

- The $\Lambda(1405) \rightarrow \Lambda\gamma$ radiative decay mode is suited
 to observe the $\overline{K}N$ component inside $\Lambda(1405)$.
4. Radiative decay vs. compositeness

++ $\Lambda(1405)$ radiative decay width ++

- $\Sigma^0\gamma$ decay mode:
 Dominated by the $\pi\Sigma$ component.

- $\Gamma_{\Sigma^0\gamma} \sim 23$ keV even for $|X_{KN}| = 0$.

- Very large allowed region for $\Gamma_{\Sigma^0\gamma}$.

- $\Gamma_{\Sigma^0\gamma}$ could be very large or very small for $|X_{KN}| \sim 1$.
4. Radiative decay vs. compositeness

++ Compared with the “experimental” result ++

- There is an “experimental” value of the $\Lambda(1405)$ radiative decay:
 \[
 \Gamma(\Lambda(1405) \rightarrow \Lambda\gamma) = 27 \pm 8 \text{ keV},
 \]
 \[
 \Gamma(\Lambda(1405) \rightarrow \Sigma^0\gamma) = 10 \pm 4 \text{ keV} \text{ or } 23 \pm 7 \text{ keV}.
 \]
4. Radiative decay vs. compositeness

++ Compared with the “experimental” result ++

- There is an “experimental” value of the $\Lambda(1405)$ radiative decay:
 \[\Gamma(\Lambda(1405) \rightarrow \Lambda\gamma) = 27 \pm 8 \text{ keV}, \quad \text{PDG; Burkhardt and Lowe, Phys. Rev. C44 (1991) 607.} \]
 \[\Gamma(\Lambda(1405) \rightarrow \Sigma^0\gamma) = 10 \pm 4 \text{ keV or } 23 \pm 7 \text{ keV}. \]

- From $\Gamma(\Lambda(1405) \rightarrow \Lambda\gamma) = 27 \pm 8 \text{ keV}$: $|X_{KN}| = 0.5 \pm 0.2$.

 --- KN seems to be the largest component inside $\Lambda(1405)$!
++ Compared with the “experimental” result ++

- There is an “experimental” value of the $\Lambda(1405)$ radiative decay:
 $\Gamma(\Lambda(1405) \rightarrow \Lambda \gamma) = 27 \pm 8$ keV, PDG; Burkhardt and Lowe, Phys. Rev. C44 (1991) 607.
 $\Gamma(\Lambda(1405) \rightarrow \Sigma^0 \gamma) = 10 \pm 4$ keV or 23 ± 7 keV.

- From $\Gamma(\Lambda(1405) \rightarrow \Sigma^0 \gamma) = 10 \pm 4$ keV: $|X_{KN}| > 0.5$.
 --- Consistent with the $\Lambda \gamma$ decay mode: large $\overline{K}N$ component!
++ Compared with the “experimental” result ++

- There is an “experimental” value of the $\Lambda(1405)$ radiative decay:
 \[\Gamma(\Lambda(1405) \rightarrow \Lambda\gamma) = 27 \pm 8 \text{ keV}, \]
 \[\Gamma(\Lambda(1405) \rightarrow \Sigma^0\gamma) = 10 \pm 4 \text{ keV} \text{ or } 23 \pm 7 \text{ keV}. \]

- From $\Gamma(\Lambda(1405) \rightarrow \Sigma^0\gamma) = 23 \pm 7 \text{ keV}$: $|X_{KN}|$ can be arbitrary.
4. Radiative decay vs. compositeness

++ Pole position dependence ++

- The $\Lambda(1405)$ pole position is **not well-determined** in Exp.

--- Two poles? 1420 MeV instead of nominal 1405 MeV?

$$|X_{\bar{K}N}| = |g_{\bar{K}N}|^2 \left| \frac{dG_{K^-p}}{d\sqrt{s}} + \frac{dG_{\bar{K}^0n}}{d\sqrt{s}} \right|_{\sqrt{s}=W_{\text{pole}}}$$

How the relation between $\Gamma_{\Lambda\gamma}$, $\Gamma_{\Sigma^0\gamma}$ and $|X_{\bar{K}N}|$ is changed if the pole position is shifted?

Pole position from PDG.
4. Radiative decay vs. compositeness

++ Pole position dependence ++

- The \(\Lambda(1405) \) pole position is not well-determined in Exp.

--- Two poles? 1420 MeV instead of nominal 1405 MeV?

--- Will be seen in, e.g.,

\[K^- p^* \rightarrow \Lambda(1405) \] production.

\[|X_{KN}| = |g_{KN}|^2 \left| \frac{dG_{K^-p}}{d\sqrt{s}} + \frac{dG_{K^0n}}{d\sqrt{s}} \right|_{\sqrt{s}=W_{\text{pole}}} \]

Higher \(\Lambda(1405) \) pole position.
4. Radiative decay vs. compositeness

++ Pole position dependence ++

- The $\Lambda(1405)$ pole position is not well-determined in Exp.

--- Two poles? 1420 MeV instead of nominal 1405 MeV?

--- Will be seen in, e.g., $\pi^- p \rightarrow K^0 \Lambda(1405)$ production. Lower $\Lambda(1405)$ pole position.

$|X_{KN}| = |g_{KN}|^2 \left| \frac{dG_{Kp}}{d\sqrt{s}} + \frac{dG_{Kn}}{d\sqrt{s}} \right|_{\sqrt{s}=W_{pole}}$

$\Gamma_{\gamma\gamma}$, $M_{\Lambda(1405)} = 1381$ MeV

$\Sigma^0\gamma$, $M_{\Lambda(1405)} = 1381$ MeV
4. Radiative decay vs. compositeness

++ Pole position dependence ++

- Pole position dependence is not strong for the $\Lambda\gamma$ decay mode.
 --- Especially the result of $|X_{KN}|$ from the empirical value of the $\Lambda\gamma$ decay mode is almost same.

- Different branching ratio $\Lambda\gamma / \Sigma^0\gamma$.
 --> Could be evidence of two poles.
5. Summary
5. Summary

++ Summary ++

- We have investigated the $\Lambda(1405)$ radiative decay from the viewpoint of compositeness = amount of two-body state inside system.

$$X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$

- We have established a relation between the absolute value of the $\bar{K}N$ compositeness $|X_{\bar{K}N}|$ and the $\Lambda(1405)$ radiative decay width.

 - For the $\Lambda \gamma$ decay mode, $\bar{K}N$ component is dominant.
 --> Large $\Lambda \gamma$ width directly indicates large compositeness $|X_{\bar{K}N}|$.

 - For the $\Sigma^0 \gamma$ decay mode, $\pi \Sigma$ component is dominant.
 --> We could say $|X_{\bar{K}N}| \sim 1$ if $\Gamma_{\Sigma^0 \gamma}$ could be very large or very small.

- By using the “experimental” value for the $\Lambda(1405)$ decay width, we have estimated the $\bar{K}N$ compositeness as $|X_{\bar{K}N}| > 0.5$.

--- For more concrete conclusion, precise experiments are needed!
Thank you very much for your kind attention!
Appendix