Determination of *KN* **compositeness of the** A(1405) **resonance from its radiative decay**

Takayasu SEKIHARA (RCNP, Osaka Univ.)

in collaboration with

Shunzo KUMANO (KEK)

[1] T. S. and S. Kumano, *Phys. Rev.* <u>C89</u> (2014) 025202 [arXiv:1311.4637 [nucl-th]].

Seminar @ ASRC, JAEA (May 21st, 2014)

Contents

- 1. Introduction
- 2. Compositeness
- 3. Formulation of $\Lambda(1405)$ radiative decay
- 4. Radiative decay width vs. compositeness
- 5. Summary

++ Hadrons ++

Hadrons ---- Interact with each other by strong interaction.

They should be <u>"color" singlet</u>.

Why we know that baryons (mesons) are composed of qqq (qq)?
 We can construct color singlet states minimally from qqq and qq.
 --- QCD, fundamental theory of strong interaction, restricts observables to be color singlet.

Excellent successes of constituent quark models.

--- <u>Classifications with qqq and qq</u>, <u>mass spectra</u>, <u>magnetic moments</u>, <u>transition amplitudes</u>, ...

(
Parton distribution inside nucleons.
...)

Seminar @ ASRC, JAEA (May 21st, 2014)

++ Exotic hadrons and their structure ++ Exotic hadrons --- not same quark component as ordinary hadrons = not qqq nor qq --- They should be <u>"color" singlet</u> as well.

Penta-quarks <u>Tetra-quarks</u> <u>Hybrids</u> <u>Glueballs</u> Hadronic molecules

- --- Actually some hadrons cannot be described by the quark model.
 - Do they really exist ?

RCNP

- If they do exist, how are their properties ?
 - --- Can we extend <u>constituent quarks to penta- and tetra-quarks</u>? --- How is the <u>"constituent" gluons</u>?
- If they do not exist, what forbid their existence ?
- <-- We know very few about hadrons (and dynamics of QCD).

++ Exotic hadrons and their structure ++
Exotic hadrons --- not same quark component as ordinary hadrons = not qqq nor qq

. --- They should be <u>"color" singlet</u> as well.
--- <u>Compact multi-quark systems</u>, <u>glueballs</u>, hadronic molecules, ...
Candidates: Λ(1405), the lightest scalar mesons, XYZ, ...

• $\Lambda(1405) --- Mass = 1405.1 \stackrel{+1.3}{-1.0} MeV$, width = 1/(life time) = 50 ± 2 MeV, decay to $\pi\Sigma$ (100 %), $I(J^P) = 0(1/2^{--})$. Particle Data Group

$$I(J^P) = 0(\frac{1}{2}^{-})$$

Mass $m = 1405.1^{+1.3}_{-1.0}$ MeV Full width $\Gamma = 50 \pm 2$ MeV Below $\overline{K}N$ threshold

Fraction (Γ_i/Γ)	p (MeV/c)
100 %	155
	Fraction (Γ _i /Γ) 100 %

A(1405) 1/2

Seminar @ ASRC, JAEA (May 21st, 2014)

++ Exotic hadrons and their structure ++
Exotic hadrons --- not same quark component as ordinary hadrons = not qqq nor qq

. --- They should be "color" singlet as well.
--- Compact multi-quark systems, glueballs, hadronic molecules, ...
Candidates: Λ(1405), the lightest scalar mesons, XYZ, ...

- $\Lambda(1405) --- Mass = 1405.1 \stackrel{+1.3}{-1.0} MeV$, width = 1/(life time) = 50 ± 2 MeV, decay to $\pi\Sigma$ (100 %), $I(J^P) = 0(1/2^{--})$. Particle Data Group
- Why is $\Lambda(1405)$ the lightest excited baryon with $J^P = 1/2$.
- --- Λ(1405) contains a strange quark, which should be ~ 100 MeV heavier than up and down quarks.
 - Strongly attractive \overline{KN} interaction in the I = 0 channel.
 - --> $\Lambda(1405)$ is a \overline{KN} quasi-bound state ??? Dalitz and Tuan ('60), ...

++ Dynamically generated Λ(1405) ++
 The chiral unitary model (ChUM) reproduces low-energy Exp. data and dynamically generates Λ(1405) in meson-baryon degrees of f.

Kaiser-Siegel-Weise ('95), Oset-Ramos ('98), Oller-Meissner ('01), Jido et al. ('03), ...

--- <u>Spontaneous chiral symmetry breaking + Scattering unitarity.</u>

 Λ (1405) in *KN*-πΣ-ηΛ-*K*Ξ coupled-channels.

 Prediction: Two poles for Λ(1405) are dynamically generated.

Jido et al., Nucl. Phys. A725 (2003) 181.

--- One of the poles (around 1420 MeV)

originates from \overline{KN} bound state.

Hyodo and Weise, *Phys. Rev.* <u>C77</u> (2008) 035204.

Hyodo and Jido, Prog. Part. Nucl. Phys. 67 (2012) 55.

++ Determine hadron structures ++

• How can we determine the structure of hadrons in Exp. ?

 $|\Lambda(1405)\rangle = C_{uds}|uds\rangle + C_{\bar{K}N}|\bar{K}\rangle \otimes |N\rangle + C_{uud\bar{u}s}|uud\bar{u}s\rangle + \cdots$

- Spatial structure (= spatial size).
- ---- Loosely bound hadronic molecules will have large spatial size.

T. S., T. Hyodo and D. Jido, *Phys. Lett.* <u>B669</u> (2008) 133; *Phys. Rev.* <u>C83</u> (2011) 055202; T. S. and T. Hyodo, *Phys. Rev.* <u>C87</u> (2013) 045202.

- <u>"Count" quarks inside hadron by using some special condition.</u>
 Scaling law for the quark counting rule in high energy scattering. H. Kawamura, S. Kumano and T. S. , *Phys. Rev.* <u>D88</u> (2013) 034010.
- <u>Compositeness X</u> = amount of two-body state inside system.
 cf. Deuteron is a proton-neutron bound state, not elementary.

Weinberg, Phys. Rev. <u>137</u> (1965) B672; Hyodo, Jido and Hosaka, Phys. Rev. <u>C85</u> (2012) 015201;

T.S., T. Hyodo and D. Jido, in preparation.

 ++ Uniqueness of hadronic molecules ++
 Hadronic molecules seem to be unique, because they would have large spatial size compared to other (compact) hadrons.

- The uniqueness comes from the fact that hadronic molecules are composed of hadrons themselves, which are <u>color singlet</u>.
- --> This fact leads to various quantitative and qualitative differences of hadronic molecules from other compact hadrons.
 - Large spatial size.

RCNP

- Theoretical prediction of existence around two-body threshold.
- Compositeness defined from two-body wave functions.

++ Physical meaning of compositeness ++

Compositeness (X) = amount of the two-body components

in a resonance as well as a bound state.

Compositeness can be defined as <u>the contribution of the two-body</u> <u>component</u> to the normalization of the total wave function.

$$\langle \Lambda(1405) | \Lambda(1405) \rangle = X_{\bar{K}N} + X_{\pi\Sigma} + \dots + Z = 1$$

---- K, N are color singlet and hence observables, but quarks are not.

++ Compositeness, model calculation ++ Compositeness (X) = amount of the two-body components

u

in a resonance as well as a bound state.

(Large composite $<--> X \sim 1$)

--- Elementariness $Z = 1 - \sum X_i$

s d

---- *i*-channel compositeness is expressed as: Hyodo, Jido, Hosaka (2012),

$$X_{i} = -g_{i}^{2} \frac{dG_{i}}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$

$$T_{ij}(s) = V_{ij} + \sum_{k} V_{ik} G_{k} T_{kj}$$

$$T_{ij}(s) = V_{ij} + \sum_{k} V_{ik} G_{k} T_{kj}$$

$$T_{ij} = \frac{g_{i}g_{j}}{\sqrt{s} - W_{\text{pole}}} + T_{\text{BG}}$$

$$G_{i}(s) = i \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2} - m_{k}^{2} + i\epsilon} \frac{1}{(P - q)^{2} - m_{k}^{\prime 2} + i\epsilon}$$
Seminar @ ASRC, JAEA (May 21st, 2014) 13

++ Compositeness, model calculation ++ Compositeness (X) = amount of the two-body components

u

in a resonance as well as a bound state.

(Large composite $<--> X \sim 1$)

--- Elementariness $Z = 1 - \sum X_i$

 Recently compositeness has been discussed in the context of the chiral unitary model.
 ---- <u>i-channel compositeness</u> is expressed as: Hydrogeneous H

s d

annel compositeness is expressed as: Hyodo, Jido, Hosaka (2012), T. S. , T. Hyodo and D. Jido, in preparation.

$$X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$

 g_i

--> Compositeness can be determined from the coupling constant g_i and the pole position W_{pole}.

$$G_i(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_k^2 + i\epsilon} \frac{1}{(P-q)^2 - m_k'^2 + i\epsilon}$$

++ Compositeness, model calculation ++ Compositeness (X) = amount of the two-body components

u

in a resonance as well as a bound state.

s d

Hyodo, Jido, Hosaka (2012),

T.S., T. Hyodo and D. Jido, in preparation.

(Large composite $<--> X \sim 1$)

--- Elementariness $Z = 1 - \sum X_i$

$$X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$

 Compositeness of Λ(1405) in the chiral unitary model:
 --> Complex values, which cannot be interpreted as the probability.

	$\Lambda(1405)$, lower pole	$\Lambda(1405)$, higher pole
$W_{\rm pole}$	1391 - 66i MeV	$1426 - 17i { m MeV}$
$X_{\bar{K}N}$	-0.21 - 0.13i	0.99 + 0.05i
$X_{\pi\Sigma}$	0.37 + 0.53i	-0.05 - 0.15i
$X_{\eta\Lambda}$	-0.01 + 0.00i	0.05 + 0.01i
$X_{K\Xi}$	0.00 - 0.01i	0.00 + 0.00i
Z	0.86 - 0.40i	0.00 + 0.09i

T. S. and T. Hyodo, Phys. Rev. C87 (2013) 045202.

Seminar @ ASRC, JAEA (May 21st, 2014)

++ Compositeness, model calculation ++ Compositeness (X) = amount of the two-body components

u

in a resonance as well as a bound state.

 Recently compositeness has been discussed in the context of the chiral unitary model.
 --- <u>i-channel compositeness</u> is expressed as:

s d

Hyodo, Jido, Hosaka (2012),

T.S., T. Hyodo and D. Jido, in preparation.

(Large composite $<--> X \sim 1$)

--- Elementariness $Z = 1 - \sum X_i$

 $X_{i} = -g_{i}^{2} \frac{dG_{i}}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$ $\Box \text{ Compositeness of } \Lambda(1405)$ in the chiral unitary model:
--> Large KN component
for (higher) $\Lambda(1405)$,
since X_{KN} is almost unity.

	$\Lambda(1405)$, lower pole	$\Lambda(1405)$, higher pole
$W_{\rm pole}$	$1391 - 66i { m MeV}$	$1426 - 17i { m MeV}$
$X_{\bar{K}N}$	-0.21 - 0.13i	0.99 + 0.05i
$X_{\pi\Sigma}$	0.37 + 0.53i	-0.05 - 0.15i
$X_{\eta\Lambda}$	-0.01 + 0.00i	0.05 + 0.01i
$X_{K\Xi}$	0.00 - 0.01i	0.00 + 0.00i
Z	0.86 - 0.40i	0.00 + 0.09i

T. S. and T. Hyodo, Phys. Rev. C87 (2013) 045202.

16

++ Compositeness in experiments ++

• How can we determine compositeness of $\Lambda(1405)$ in experiments ?

$$X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$

--- Compositeness can be evaluated from the coupling constant g_i and the pole position W_{pole} .

Exercise: πΣ compositeness.
 Pole position from PDG values:

 $W_{\text{pole}} = M_{\Lambda(1405)} - i \Gamma_{\Lambda(1405)} / 2$ with $M_{\Lambda(1405)} = 1405$ MeV, $\Gamma_{\Lambda(1405)} = 50$ MeV.

• Coupling constant $g_{\pi\Sigma}$ from $\Lambda(1405) \rightarrow \pi\Sigma$ decay width:

$$\Gamma_{\Lambda(1405)} = 3 \times \frac{p_{\rm cm} M_{\Sigma}}{2\pi M_{\Lambda(1405)}} |g_{\pi\Sigma}|^2 = 50 \text{ MeV} \qquad \text{--> } |g_{\pi\Sigma}| = 0.91 \text{ .}$$

--> From the compositeness formula, we obtain $|X_{\pi\Sigma}| = 0.19$. --- Not small, but not large $\pi\Sigma$ component for $\Lambda(1405)$.

Then, how is KN compositeness ?

++ Compositeness in experiments ++

• How can we determine \overline{KN} compositeness of $\Lambda(1405)$ in Exp. ?

$$X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$

 $\Lambda(1405)$

Ν

- Pole position can be fixed from PDG values.
- × Unfortunately, one cannot directly determine the \overline{KN} coupling constant in Exp. in contrast to the $\pi\Sigma$ coupling strength, because $\Lambda(1405)$ exists just below the \overline{KN} threshold (~ 1435 MeV).
- Furthermore, there are no direct model-independent relations between the KN compositeness and observables such as the K⁻⁻ p scattering length, in contrast to the deuteron case.
 The relation for deuteron is valid only for small B_E.
- --> Therefore, in order to determine the \overline{KN} compositeness, we have to observe some reactions which are relevant to the \overline{KN} coupling cosntant. --- Such as the $\Lambda(1405)$ radiative decay !

3. Formulation of Λ(1405) radiative decay

++ Radiative decay of $\Lambda(1405)$ ++ • There is an "experimental" value of the $\Lambda(1405)$ radiative decay: $\Gamma(\Lambda(1405) \rightarrow \Lambda \gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) \rightarrow \Sigma^0 \gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.

There are also several theoretical studies on the radiative decay:

Geng, Oset and Döring, Eur. Phys. J. A32 (2007) 201.

Table 3. The radiative decay widths of the $\Lambda(1405)$ predicted by different theoretical models, in units of keV. The values denoted by "U χ PT" are the results obtained in the present study. The widths calculated for the low-energy pole and high-energy pole are separated by a comma.

Decay channel	$U\chi PT$	χ QM [35]	BonnCQM [36]	NRQM	RCQM [39]
$\gamma \Lambda$	16.1, 64.8	168	912	143 [37], 200, 154 [38]	118
$\gamma \Sigma^0$	73.5, 33.5	103	233	91 [37], 72, 72 [38]	46
Decay channel	MIT bag [38]	Chiral bag [40]	Soliton [41]	Algebraic model [42]	Isobar fit [23]
$\gamma \Lambda$	60, 17	75	44,40	116.9	27 ± 8
$\gamma \Sigma^0$	18, 2.7	1.9	13,17	155.7	10 ± 4 or 23 ± 7

 --- Structure of Λ(1405) has been discussed in these models, but the KN compositeness for Λ(1405) has not been discussed.
 --> Discuss the KN compositeness from the Λ(1405) radiative decay !

++ Formulation of radiative decay ++

• Radiative decay width can be evaluated from following diagrams:

Geng, Oset and Döring, Eur. Phys. J. A32 (2007) 201.

Photon emission from meson-baryon components inside Λ(1405).
 Strictly, qqq or qqqqq systems should have finite spatial size, so we may have to take into account the following diagram:

but we neglect this diagram.

RCNP

<-- <u>The qqq or qqqqq component inside A(1405) should be small</u> according to the failure of the quark model.

++ Formulation of radiative decay ++

• Radiative decay width can be evaluated from following diagrams:

Geng, Oset and Döring, Eur. Phys. J. A32 (2007) 201.

Photon emission from meson-baryon components inside Λ(1405).
 Strictly, qqq or qqqqq systems should have finite spatial size, so we may have to take into account the following diagram:

but we neglect this diagram.

<-- The qqq or qqqqq component inside A(1405) should be small according to the failure of the quark model.

++ Formulation of radiative decay ++

• Radiative decay width can be evaluated from following diagrams:

Geng, Oset and Döring, Eur. Phys. J. A32 (2007) 201.

- Each diagram diverges, but <u>sum of the three diagrams converges</u> due to the gauge symmetry.
- --- One can prove that the sum converges using the Ward identity.
- The radiative decay width can be expressed as follows:

++ Formulation of radiative decay ++

Radiative decay width can be evaluated from following diagrams:

Geng, Oset and Döring, Eur. Phys. J. A32 (2007) 201.

- Each diagram diverges, but <u>sum of the three diagrams converges</u> due to the gauge symmetry.
- --- One can prove that the sum converges using the Ward identity.
- The radiative decay width can be expressed as follows:

$$\Gamma_{Y^{0}\gamma} = \frac{p_{\rm cm}' M_{Y^{0}}}{\pi M_{\Lambda(1405)}} |W_{Y^{0}\gamma}|^{2} \quad \text{with} \quad W_{Y^{0}\gamma} \equiv e \sum_{i} g_{i} Q_{M_{i}} \tilde{V}_{iY^{0}} A_{iY^{0}}$$

---- Coupling constant g_i appears as a model parameter ! --> Radiative decay is relevant to the \overline{KN} coupling ! \Box For $\Lambda(1405), K^{--}p, \pi^{\pm}\Sigma^{\mp}$, and $K^{+}\Xi^{--}$ are relevant channels.

++ Radiative decay in chiral unitary model ++ Taken from the coupling constant g_i from chiral unitary model,

one can evaluate radiative decay width in chiral unitary model.

Table 3. The radiative decay widths of the $\Lambda(1405)$ predicted by different theoretical models, in units of keV. The values denoted by "U χ PT" are the results obtained in the present study. The widths calculated for the low-energy pole and high-energy pole are separated by a comma.

			$\Lambda(1405)$, lower pole	$\Lambda(1405)$, higher pole	
Decay channel	UχPT	Wpole	1391 - 66i MeV	1426 - 17i MeV	9]
$\gamma \Lambda$	16.1, 64.8	$X_{\bar{K}N}$	-0.21 - 0.13i	0.99 + 0.05i	
$\gamma \Sigma^0$	73.5, 33.5	$X_{\pi\Sigma}$	0.37 + 0.53i	-0.05 - 0.15i	
Decay channel	MIT bag [38]	$X_{\eta\Lambda}$	-0.01 + 0.00i	0.05 + 0.01i	23]
$\gamma \Lambda$	60, 17	$X_{K\Xi}$	0.00 - 0.01i	0.00 + 0.00i	
$\gamma \Sigma^0$	18, 2.7	Z	0.86 - 0.40i	0.00 + 0.09i	± 7

Geng, Oset and Döring, Eur. Phys. J. A32 (2007) 201.

with

 $Q_{\pi^+} = -Q_{\pi^-} = 1$

• $\Lambda\gamma$ decay mode: Dominated by the \overline{KN} component.

• Larger $K^{-}p\Lambda$ coupling strength:

Large $\pi\Sigma$ cancellation:

$$\tilde{V}_{\pi^+\Sigma^-\Lambda} = \tilde{V}_{\pi^-\Sigma^+\Lambda} = \frac{D}{\sqrt{3}f} \approx \frac{0.46}{f}$$

 $\tilde{V}_{K^-p\Lambda} = -\frac{D+3F}{2\sqrt{3}f} \approx -\frac{0.63}{f}$

 V_{mbb}

++ Radiative decay in chiral unitary model ++ <u>Taken from the coupling constant g_i from chiral unitary model</u>,

one can evaluate radiative decay width in chiral unitary model.

Table 3. The radiative decay widths of the $\Lambda(1405)$ predicted by different theoretical models, in units of keV. The values denoted by "U χ PT" are the results obtained in the present study. The widths calculated for the low-energy pole and high-energy pole are separated by a comma.

		$\Lambda(1405)$, lower pole	$\Lambda(1405)$, higher pole	
$U\chi PT$	Wpole	1391 - 66i MeV	1426 - 17i MeV	9]
16.1, 64.8	$X_{\bar{K}N}$	-0.21 - 0.13i	0.99 + 0.05i	
73.5, 33.5	$X_{\pi\Sigma}$	0.37 + 0.53i	-0.05 - 0.15i	
MIT bag [38]	$X_{\eta\Lambda}$	-0.01 + 0.00i	0.05 + 0.01i	23]
60, 17	$X_{K\Xi}$	0.00 - 0.01i	0.00 + 0.00i	
18, 2.7	Z	0.86 - 0.40i	0.00 + 0.09i	± 7
	UχPT 16.1, 64.8 73.5, 33.5 MIT bag [38] 60, 17 18, 2.7	$U\chi$ PT W_{pole} 16.1, 64.8 $X_{\bar{K}N}$ 73.5, 33.5 $X_{\pi\Sigma}$ MIT bag [38] $X_{\eta\Lambda}$ 60, 17 $Z_{K\Xi}$ 18, 2.7 Z	$U_{\chi}PT$ W_{pole} 1391 - 66i MeV16.1, 64.8 $X_{\bar{K}N}$ $-0.21 - 0.13i$ 73.5, 33.5 $X_{\pi\Sigma}$ $0.37 + 0.53i$ MIT bag [38] $X_{\eta\Lambda}$ $-0.01 + 0.00i$ 60, 17 $X_{K\Xi}$ $0.00 - 0.01i$ 18, 2.7 Z $0.86 - 0.40i$	$U_{\chi}PT$ M_{pole} 1391 - 66i MeV1426 - 17i MeV16.1, 64.8 $X_{\bar{K}N}$ $-0.21 - 0.13i$ $0.99 + 0.05i$ 73.5, 33.5 $X_{\pi\Sigma}$ $0.37 + 0.53i$ $-0.05 - 0.15i$ MIT bag [38] $X_{\eta\Lambda}$ $-0.01 + 0.00i$ $0.05 + 0.01i$ 60, 17 $X_{K\Xi}$ $0.00 - 0.01i$ $0.00 + 0.00i$ 18, 2.7 Z $0.86 - 0.40i$ $0.00 + 0.09i$

Geng, Oset and Döring, Eur. Phys. J. A32 (2007) 201.

= $\Sigma^0 \gamma$ decay mode: Dominated by the $\pi \Sigma$ component.

• Smaller $K^{-}p\Sigma^0$ coupling strength:

$$\tilde{V}_{K^-p\Sigma^0} = \frac{D-F}{2f} \approx \frac{D}{2}$$

$$\frac{0.17}{c}$$

$$ilde{V}_{mbb}$$

• Constructive $\pi \Sigma$ contribution:

$$\tilde{V}_{\pi^+\Sigma^-\Sigma^0} = -\tilde{V}_{\pi^-\Sigma^+\Sigma^0} = \frac{F}{f} \approx \frac{0.47}{f}$$

++ Our strategy ++

• We evaluate the $\Lambda(1405)$ radiative decay width $\Gamma_{\Lambda\gamma}$ and $\Gamma_{\Sigma^0\gamma}$

as a function of the absolute value of the *KN* compositeness | X_{KN} |. --- We can evaluate the $\Lambda(1405)$ radiative decay width when the $\Lambda(1405)$ --meson-baryon coupling constant (model parameter) and the $\Lambda(1405)$ pole position are given.

--- $|X_{KN}|$ should contain information of the $\Lambda(1405)$ structure !

++ Our strategy ++

- We evaluate the $\Lambda(1405)$ radiative decay width $\Gamma_{\Lambda\gamma}$ and $\Gamma_{\Sigma^0\gamma}$
- as a function of the absolute value of the \overline{KN} compositeness | $X_{\overline{KN}}$ |. --- We can evaluate the $\Lambda(1405)$ radiative decay width when the $\Lambda(1405)$ --meson-baryon coupling constant (model parameter) and the $\Lambda(1405)$ pole position are given.
 - $\Box \Lambda(1405) \text{ pole position from PDG values}:$
 - $W_{\text{pole}} = M_{\Lambda(1405)} i \Gamma_{\Lambda(1405)} / 2$ with $M_{\Lambda(1405)} = 1405$ MeV, $\Gamma_{\Lambda(1405)} = 50$ MeV.
 - Assume isospin symmetry for the coupling constant g_i:

 $g_{\bar{K}N} = g_{K^-p} = g_{\bar{K}^0n} \qquad g_{\pi\Sigma} = g_{\pi^+\Sigma^-} = g_{\pi^-\Sigma^+} = g_{\pi^0\Sigma^0}$

and neglect $K\Xi$ component: $g_{K^+\Xi^-} = g_{K^0\Xi^0} = 0$

The coupling constant g_{KN} as a function of X_{KN} is determined from the compositeness relation:

$$X_{\bar{K}N}| = |g_{\bar{K}N}|^2 \left| \frac{dG_{K^-p}}{d\sqrt{s}} + \frac{dG_{\bar{K}^0n}}{d\sqrt{s}} \right|_{\sqrt{s}=W_{\text{pole}}}$$

++ Our strategy ++

- We evaluate the $\Lambda(1405)$ radiative decay width $\Gamma_{\Lambda\gamma}$ and $\Gamma_{\Sigma^0\gamma}$
- as a function of the absolute value of the *KN* compositeness | X_{KN} |. --- We can evaluate the $\Lambda(1405)$ radiative decay width when the $\Lambda(1405)$ --meson-baryon coupling constant (model parameter) and the $\Lambda(1405)$ pole position are given.
 - Coupling constant $g_{\pi\Sigma}$ from $\Lambda(1405) \rightarrow \pi\Sigma$ decay width:

$$\Gamma_{\Lambda(1405)} = 3 \times \frac{p_{\rm cm} M_{\Sigma}}{2\pi M_{\Lambda(1405)}} |g_{\pi\Sigma}|^2 = 50 \text{ MeV} \qquad \text{--> } |g_{\pi\Sigma}| = 0.91 \text{ .}$$

• Interference between \overline{KN} and $\pi\Sigma$ components

(= relative phase between g_{KN} and $g_{\pi\Sigma}$) are not known. --> We show allowed region of the decay width from

maximally constructive / destructive interferences:

$$W_{Y^{0}\gamma}^{\pm} = e \left(|g_{\bar{K}N}| \times \left| \tilde{V}_{K^{-}pY^{0}} A_{K^{-}pY^{0}} \right| \pm |g_{\pi\Sigma}| \times \left| \tilde{V}_{\pi^{+}\Sigma^{-}Y^{0}} A_{\pi^{+}\Sigma^{-}Y^{0}} - \tilde{V}_{\pi^{-}\Sigma^{+}Y^{0}} A_{\pi^{-}\Sigma^{+}Y^{0}} \right| \right)$$

 $\Gamma_{Y^{0}\gamma} = \frac{p_{\rm cm}' M_{Y^{0}}}{\pi M_{\Lambda(1405)}} |W_{Y^{0}\gamma}|^{2}$

++ $\Lambda(1405)$ radiative decay width ++

• We obtain allowed region of the $\Lambda(1405)$ radiative decay width as a function of the absolute value of the \overline{KN} compositeness | X_{KN} |.

--- $\Lambda(1405)$ pole position dependence is small (discuss later).

Seminar @ ASRC, JAEA (May 21st, 2014)

++ $\Lambda(1405)$ radiative decay width ++

• $\Lambda \gamma$ decay mode: Dominated by the \overline{KN} component. --- Due to the large $\Gamma_{Y^0\gamma}$ [keV] cancellation between $\pi^+\Sigma^-$ and $\pi^-\Sigma^+$, allowed region for $\Lambda\gamma$ is very small and is almost proportional to $|X_{KN}| (\propto |g_{KN}|^2)$. --> Large $\Lambda \gamma$ width = large $|X_{KN}|$.

• The $\Lambda(1405) \rightarrow \Lambda\gamma$ radiative decay mode is suited to observe the \overline{KN} component inside $\Lambda(1405)$.

++ $\Lambda(1405)$ radiative decay width ++

- Σ⁰γ decay mode:
 Dominated by the
 πΣ component.
 - $\Box \Gamma_{\Sigma^0 \gamma} \sim 23 \text{ keV}$ even for | X_{KN} | = 0.
 - □ Very large allowed region for $\Gamma_{\Sigma^0 \gamma}$.
 - $\Box \Gamma_{\Sigma^0 \gamma} \text{ could be very} \\ \textbf{large or very small} \\ \textbf{for } | X_{KN} | \sim 1. \\ \end{array}$

++ Compared with the "experimental" result ++ There is an "experimental" value of the $\Lambda(1405)$ radiative decay: $\Gamma(\Lambda(1405) \rightarrow \Lambda \gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) \rightarrow \Sigma^{0}\gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.

++ Compared with the "experimental" result ++ • There is an "experimental" value of the $\Lambda(1405)$ radiative decay: $\Gamma(\Lambda(1405) \rightarrow \Lambda \gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) \rightarrow \Sigma^0 \gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.

• From $\Gamma(\Lambda(1405) \rightarrow \Lambda \gamma) = 27 \pm 8 \text{ keV}$: $|X_{KN}| = 0.5 \pm 0.2$. --- \overline{KN} seems to be the largest component inside $\Lambda(1405)$!

++ Compared with the "experimental" result ++ There is an "experimental" value of the $\Lambda(1405)$ radiative decay: $\Gamma(\Lambda(1405) \rightarrow \Lambda \gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) \rightarrow \Sigma^{0}\gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.

• From $\Gamma(\Lambda(1405) \rightarrow \Sigma^0 \gamma) = 10 \pm 4 \text{ keV}$: $|X_{KN}| > 0.5$. --- Consistent with the $\Lambda \gamma$ decay mode: large \overline{KN} component !

++ Compared with the "experimental" result ++ • There is an "experimental" value of the $\Lambda(1405)$ radiative decay: $\Gamma(\Lambda(1405) \rightarrow \Lambda\gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) \rightarrow \Sigma^0\gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.

• From $\Gamma(\Lambda(1405) \rightarrow \Sigma^0 \gamma) = 23 \pm 7 \text{ keV}$: $|X_{KN}|$ can be arbitrary.

++ Pole position dependence ++

• The $\Lambda(1405)$ pole position is not well-determined in Exp.

- <u>Two poles ?</u> <u>1420 MeV instead of nominal 1405 MeV ?</u>

++ Pole position dependence ++

• The $\Lambda(1405)$ pole position is not well-determined in Exp.

- <u>Two poles ?</u> <u>1420 MeV instead of nominal 1405 MeV ?</u>

RCNP

++ Pole position dependence ++

• The $\Lambda(1405)$ pole position is not well-determined in Exp.

Two poles ? 1420 MeV instead of nominal 1405 MeV ?

Seminar @ ASRC, JAEA (May 21st, 2014)

RCNP

++ Pole position dependence ++

Seminar @ ASRC, JAEA (May 21st, 2014)

5. Summary

++ Summary ++

We have investigated the Λ(1405) radiative decay from the viewpoint of compositeness = amount of two-body state inside system.

- We have established a relation between the absolute value of the \overline{KN} compositeness | $X_{\overline{KN}}$ | and the $\Lambda(1405)$ radiative decay width.
 - For the $\Lambda\gamma$ decay mode, \overline{KN} component is dominant.
 - --> Large $\Lambda\gamma$ width directly indicates large compositeness | X_{KN} |.
 - For the $\Sigma^0 \gamma$ decay mode, $\pi \Sigma$ component is dominant.
 - --> We could say $|X_{KN}| \sim 1$ if $\Gamma_{\Sigma^0 \gamma}$ could be very large or very small.
- By using the "experimental" value for the $\Lambda(1405)$ decay width, we have estimated the \overline{KN} compositeness as $|X_{KN}| > 0.5$.
- --- For more concrete conclusion, precise experiments are needed !

Thank you very much for your kind attention !

Appendix

