imary

Back up

NITE

### Investigation of quark-hadron phase-transition using an extended NJL model

Tong-Gyu Lee

(Kochi Univ. and JAEA)

Based on:

Prog. Theor. Exp. Phys. (2013) 013D02.

Collaborators:

Y. Tsue (Kochi Univ.),

J. da Providência, C. Providência (Univ. de Coimbra),

and M. Yamamura (Kansai Univ.).

- 513th ASRC Seminar/30th Hadron Group Seminar -

Apr. 26, 2013, JAEA-ASRC

1050

КP

(Non-perturbative aspects, phase diagram and low energy effective model of QCD)

伺 と く ヨ と く ヨ と



Basic building blocks of matter



► Phenomenological aspects of QCD (Asymptotic freedom, Quark confinement)



Running coupling constant

[ S. Bethke, Eur. Phys. J. C 64 (2009) ]

Investigation of quark-hadron phase-transition using an extended NJL model



Anti-screening

- Hadron Group Seminars (Apr. 26, 2013, JAEA-ASRC) -

Introduction Formalism Parameter set Numerical Results Gsv-dependence Summary Back up
Non-perturbative aspects of QCD

- Quantum chromodynamics (QCD)
  - $\,\triangleright\,$  A fundamental theory of strong interactions
    - $\Rightarrow$  describes strongly interacting quark-hadron many-body systems
  - ▷ Low-energy regime
    - $\Rightarrow$  quark and gluon interact non-perturbativelly
      - (non-trivial vacuum structure: non-zero quark and gluon condensates)
    - $\Rightarrow$  spontaneous chiral symmetry breaking, quark confinement, etc
  - > At high-energy densities
    - $\Rightarrow$  may occur a phase transition

from a chiral symmetry breaking confined state (Hadron)

to a chiral symmetric deconfined state (Quark-Gluon Plasma)

### QCD phase transition

 $\vartriangleright$  Under extreme environments at high temperature and/or high density

- $\Rightarrow$  Early universe right after Big Bang : Hot QCD
  - $\rightarrow$  Quark-Gluon Plasma (quark-gluon many-body systems)
- $\Rightarrow$  Interior of compact objects such as neutron stars : Dense QCD
  - $\rightarrow$  Color superconductor (quark Cooper pair)
  - $\rightarrow$  Magnetar (quark ferromagnetism)

医下口 医下

| Introduction |           | Parameter set |  |  |
|--------------|-----------|---------------|--|--|
| QCD I        | ohase sti | ructure       |  |  |

- $ightarrow H_2O$  phase diagram
  - 3 states (ice, water, vapor)



- critical point, triple point
- $\triangleright$  QCD phase diagram
  - 3 states? (Hadron, QGP, CSC)



- How about phase transitions?
- How about critical points?











Parameter s

Numerical Results

Gsv-dep

nce Si

Back up

### Exploring the QCD phase structure

### ▷ Experimental exploration

- High-energy heavy-ion collision
  - $\Rightarrow$  creation of a hot QCD matter
    - · Relativistic Heavy-ion Collider (RHIC)
    - · Large Hadron Collider (LHC)
- High-intensity heavy-ion collision
  - $\Rightarrow$  creation of a dense QCD matter
    - $\cdot$  Nuclotron-based Ion Collider fAcility (NICA)
    - · Facility for Antiproton and Ion Research (FIAR)
    - · Japan Proton Accelerator Research Complex (J-PARC)

### $\triangleright$ Theoretical exploration

- Perturbative QCD
  - ⇒ perturbative calculations only work at asymptotically high temperatures and densities
- Lattice QCD
  - $\Rightarrow$  finite temperature regime  $\rightarrow$  feasible
  - $\Rightarrow \textit{finite density regime} \rightarrow \textit{infeasible (Sign problem)}$
- Effective models
  - $\Rightarrow \mathsf{finite}_{(\mathsf{moderate})} \mathsf{ density regime} \rightarrow \mathsf{rich structure}$



Parameter s

Numerical Results

immary

#### Back up

### Exploring the QCD phase structure

### ▷ Experimental exploration

- High-energy heavy-ion collision
  - $\Rightarrow$  creation of a hot QCD matter
    - · Relativistic Heavy-ion Collider (RHIC)
    - · Large Hadron Collider (LHC)
- High-intensity heavy-ion collision
  - $\Rightarrow$  creation of a dense QCD matter
    - $\cdot$  Nuclotron-based Ion Collider fAcility (NICA)
    - · Facility for Antiproton and Ion Research (FIAR)
    - · Japan Proton Accelerator Research Complex (J-PARC)

### $\triangleright$ Theoretical exploration

- Perturbative QCD
  - ⇒ perturbative calculations only work at asymptotically high temperatures and densities
- Lattice QCD
  - $\Rightarrow$  finite temperature regime  $\rightarrow$  feasible
  - $\Rightarrow \textit{finite density regime} \rightarrow \textit{infeasible (Sign problem)}$
- Effective models
  - $\Rightarrow \mathsf{finite}_{(\mathsf{moderate})} \mathsf{ density regime} \rightarrow \mathsf{rich structure}$







Parameter s

Numerical Results

Gsv-dependence

ummary

Back up

### Exploring the QCD phase structure

### ▷ Experimental exploration

- High-energy heavy-ion collision
  - $\Rightarrow$  creation of a hot QCD matter
    - · Relativistic Heavy-ion Collider (RHIC)
    - · Large Hadron Collider (LHC)
- High-intensity heavy-ion collision
  - $\Rightarrow$  creation of a dense QCD matter
    - · Nuclotron-based Ion Collider fAcility (NICA)
    - · Facility for Antiproton and Ion Research (FIAR)
    - · Japan Proton Accelerator Research Complex (J-PARC)

### > Theoretical exploration

- Perturbative QCD
  - ⇒ perturbative calculations only work at asymptotically high temperatures and densities
- Lattice QCD
  - $\Rightarrow$  finite temperature regime  $\rightarrow$  feasible
  - $\Rightarrow$  finite density regime  $\rightarrow$  infeasible (Sign problem)
- Effective models
  - $\Rightarrow \mathsf{finite}_{(\mathsf{moderate})} \mathsf{ density regime} \rightarrow \mathsf{rich structure}$







Parameter s

Numer

Numerical Results

Gsv-dependence

ummary

Back up

### Exploring the QCD phase structure

### $\triangleright$ Experimental exploration

- High-energy heavy-ion collision
  - $\Rightarrow$  creation of a hot QCD matter
    - · Relativistic Heavy-ion Collider (RHIC)
    - · Large Hadron Collider (LHC)
- High-intensity heavy-ion collision
  - $\Rightarrow$  creation of a dense QCD matter
    - $\cdot$  Nuclotron-based Ion Collider fAcility (NICA)
    - · Facility for Antiproton and Ion Research (FIAR)
    - · Japan Proton Accelerator Research Complex (J-PARC)

### $\triangleright$ Theoretical exploration

- Perturbative QCD
  - $\Rightarrow$  perturbative calculations only work at asymptotically high temperatures and densities
- Lattice QCD
  - $\Rightarrow$  finite temperature regime  $\rightarrow$  feasible
  - $\Rightarrow \textit{finite density regime} \rightarrow \textit{infeasible (Sign problem)}$
- Effective models
  - $\Rightarrow \mathsf{finite}_{(\mathsf{moderate})} \mathsf{ density regime} \rightarrow \mathsf{rich structure}$



### we concentrate upon finite density systems

- chiral phase transition
- deconfinement phase transition (confinement problem)

### .

- Quark-Hadron phase transition
- Effective model approach (NJL-type)



### ▷ Original NJL model

 Before the discovery of quarks, it was formulated as a model for nucleons (⇒ pion was described as a nucleon-antinucleon Goldstone excitation)

Lagrangian density (2-flavor, massless) :

$$\mathcal{L}_{\text{NJL}} = \overline{\psi}_N i \gamma^\mu \partial_\mu \psi_N + G_s^N \left[ (\overline{\psi}_N \psi_N)^2 + (\overline{\psi}_N i \gamma_5 \tau^a \psi_N)^2 \right]$$

[Modelization of fermion-antifermion interaction : 4-point fermion interaction (Gs) ]

Nucleon field  $\psi_N$  is regarded as a fundamental field

### $\triangleright$ Quark NJL model

- After the establishment of QCD, it is reinterpreted as a model for quarks ( $\Rightarrow$  vacuum is described by a quark-antiquark condensate  $\langle \overline{\psi}_q \psi_q \rangle$ )
- Under mean field approximation (MFA) :

$$\mathcal{L}_{\rm MF} = \overline{\psi}_q (i\gamma^\mu \partial_\mu - m_q) \psi_q - G_s^q \langle \overline{\psi}_q \psi_q \rangle^2$$

 $\Rightarrow$  dynamical (constituent) quark mass :  $m_q = -2G_s^q \langle \overline{\psi}_q \psi_q 
angle$  (gap equation)

向下 イヨト イヨト

Back up

### Extended NJL model for nuclear matter

### ▷ Nucleon NJL model

- A four-point interaction term (characteristic of NJL) [H.Bohr et al, PRC71(2005)055203] effectively comes out of a QCD-inspired many-body model for nucleons (an effective string model  $\Leftrightarrow$  an NJL-type model (two-particle strings : chiral fields))
- The bound nucleonic matter with spontaneously broken chiral symmetry is not possible within the original NJL model [M.Buballa NP611(1996)393]
- Nuclear saturation properties (bulk static properties) is well produced by introducing an additional vector-vector 4-point and scalar-vector 8-point interaction

[V.Koch et al, PLB185(1987)1; C.Providência et al, IJMPB17(2003)5209; S.A.Moszkowski et al, arXiv:nucl-th/0204047; T.J.Bürvenich et al, NPA729(2003)769; I.N.Mishustin et al, PR391(2004)363]

( an extended NJL model ⇔ Walecka-type model (nucleon : fundamental particle) )

 $\triangleright$  Extended NJL model with  $G_{sv}^N$ 

Lagrangian density (2-flavor, massless) : ►

$$\mathcal{L}_{N} = \overline{\psi}_{N} i \gamma^{\mu} \partial_{\mu} \psi_{N} + G_{s}^{N} \left[ (\overline{\psi}_{N} \psi_{N})^{2} + (\overline{\psi}_{N} i \gamma_{5} \tau^{a} \psi_{N})^{2} \right]$$
  
 
$$- G_{v}^{N} (\overline{\psi}_{N} \gamma^{\mu} \psi_{N})^{2} - G_{sv}^{N} \left[ (\overline{\psi}_{N} \psi_{N})^{2} + (\overline{\psi}_{N} i \gamma_{5} \tau \psi_{N})^{2} \right] (\overline{\psi}_{N} \gamma^{\mu} \psi_{N})^{2}$$

**•** The term with  $G_{sv}^N$  leads to an effective density-dependent coupling :

$$G_s^N \to G_s^N(\rho_N) = G_s^N(1 - G_{sv}^N/G_s^N \cdot \rho_N^2)$$

 $\Rightarrow$  which makes an incompressibility lower [S.A.Moszkowski et al. arXiv:nucl-th/0204047]

Investigation of quark-hadron phase-transition using an extended NJL model

- Hadron Group Seminars (Apr. 26, 2013, JAEA-ASRC) -

## Introduction Formalism Parameter set Numerical Results Gsv-dependence Summary Back up Extended NJL model for quark matter

 $\rhd$  Extended NJL model with  $G^q_{sv}$ 

Lagrangian density (2-flavor, massless) :

$$\begin{aligned} \mathcal{L}_{q} &= \overline{\psi}_{q} i \gamma^{\mu} \partial_{\mu} \psi_{q} + G_{s}^{q} \left[ (\overline{\psi}_{q} \psi_{q})^{2} + (\overline{\psi}_{q} i \gamma_{5} \tau^{a} \psi_{q})^{2} \right] \\ &- G_{v}^{q} (\overline{\psi}_{q} \gamma^{\mu} \psi_{q})^{2} - G_{sv}^{q} \left[ (\overline{\psi}_{q} \psi_{q})^{2} + (\overline{\psi}_{q} i \gamma_{5} \tau \psi_{q})^{2} \right] (\overline{\psi}_{q} \gamma^{\mu} \psi_{q})^{2} \end{aligned}$$

• The term with  $G_{sv}^q$  leads to an effective density-dependent coupling :

$$G_s^q \to G_s^q(\rho_q) = G_s^q(1 - G_{sv}^q/G_s^q \cdot \rho_q^2)$$

⇒ which pushes the chiral symmetry restoration point to the high-density side (which delays the chiral restoration [S.A.Moszkowski et al, arXiv:nucl-th/0204047])

 $\Rightarrow$  a tuning parameter of the chiral restoration point [Y.Tsue et al, PTP123(2010)138]

| Introduction |      |  |  |  |
|--------------|------|--|--|--|
| Motiva       | tion |  |  |  |

### $\triangleright$ Objective

- ▶ To investigate the quark-hadron phase transition at finite temperature and density
- ▶ To draw the phase diagram on the temperature-baryon chemical potential plane
  - This talk -
  - · Hadronic phase side  $\Rightarrow$  isospin-symmetric nuclear matter (mN = (mn + mp)/2)
  - $\cdot \text{ Quark phase side} \Rightarrow \text{free quark phase (non-superconducting quark matter)}$

### $\triangleright$ Treatment

- Extended NJL model for nuclear and quark matters (2-flavor) including scalar-vector eight-point interaction
  - $\Rightarrow$  Nuclear matter : Reproduction of a rather reasonable nuclear saturation properties
  - $\Rightarrow$  Quark matter : Influence on the chiral phase transition (turning of chiral restoration)

#### Pressure comparison

- $\Rightarrow$  Determination of physically realized phase which has the largest pressure
- $\Rightarrow$  Description of the quark-hadron phase transition

イヨト イヨト

| Introduction |  |  |  |
|--------------|--|--|--|
| Outline      |  |  |  |



### Formalism









∃→ < ∃→</p>

| Formalism |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |

## Formalism

(Extended NJL model + Mean field approximation, Thermodynamics)

Investigation of quark-hadron phase-transition using an extended NJL model

伺 と く ヨ と く ヨ と



Lagrangian density for nuclear and quark matters :

$$\begin{split} \mathcal{L}_i \ &= \ \overline{\psi}_i i \gamma^{\mu} \partial_{\mu} \psi_i + G_s^i \left[ (\overline{\psi}_i \psi_i)^2 + (\overline{\psi}_i i \gamma_5 \boldsymbol{\tau} \psi_i)^2 \right] \\ &- G_v^i (\overline{\psi}_i \gamma^{\mu} \psi_i)^2 - G_{sv}^i \left[ (\overline{\psi}_i \psi_i)^2 + (\overline{\psi}_i i \gamma_5 \boldsymbol{\tau} \psi_i)^2 \right] (\overline{\psi}_i \gamma^{\mu} \psi_i)^2 \end{split}$$

First two terms : the original NJL Lagrangian (scalar-type 4-point interaction) Third term : the vector-vector repulsive term (vector-type 4-point interaction) Last term : the scalar-vector coupling term (scalar-vector-type 8-point interaction)

• For nuclear matter (i = N)

 $\Rightarrow \psi_N$  : nucleon field (fundamental, not composite)

$$\Rightarrow N_f^N = 2, \ N_c^N = 1, \ G_v^N \neq 0, \ G_{sv}^N \neq 0, \ \Lambda_N$$

• For quark matter (i = q)

 $\Rightarrow \psi_q$  : quark field

$$\Rightarrow N_f^q = 2, N_c^q = 3, G_v^q = 0, G_{sv}^q \neq 0, \Lambda_q$$

(the effects of  $G_v^q$  is well-known) [M.Kitazawa et al, PTP108(2002)929]

|         | Formalism |           |  |  |
|---------|-----------|-----------|--|--|
| Mean fi | eld appr  | oximation |  |  |

Mean field approximation :

$$\begin{split} \mathcal{L}_{i}^{MF} &= \overline{\psi}_{i}(i\gamma^{\mu}\partial_{\mu} - \underline{m_{i}})\psi_{i} + \widetilde{\mu}_{i}\overline{\psi}_{i}\gamma^{0}\psi_{i} + C_{i} \quad \underline{m_{i}}: \text{Effective mass} \\ \mathcal{H}_{i}^{MF} &= -i\overline{\psi}_{i}\boldsymbol{\gamma}\cdot\nabla\psi_{i} + m_{i}\overline{\psi}_{i}\psi_{i} + \widetilde{\mu}_{i}\overline{\psi}_{i}\gamma^{0}\psi_{i} - C_{i} \end{split}$$

with

$$\begin{split} C_i &\equiv -G_s^i \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle^2 + G_v^i \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle^2 + 3G_{sv}^i \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle^2 \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle^2 \\ &\frac{m_i = -2 \left[G_s^i + 2G_{sv}^i \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle^2\right] \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle}{\widetilde{\mu}_i = 2 \left[G_v^i + 2G_{sv}^i \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle^2\right] \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle} \\ \end{split}$$

$$\begin{split} & \mathsf{MFA} \ : \ \overline{\psi}_i \Gamma \psi_i \ \rightarrow \ \langle \!\langle \overline{\psi}_i \Gamma \psi_i \rangle \!\rangle + (\overline{\psi}_i \Gamma \psi_i \Gamma \psi_i - \langle \!\langle \overline{\psi}_i \Gamma \psi_i \rangle \!\rangle) \quad \Gamma = 1, \gamma_5, \gamma^{\mu}, \mathsf{etc.} \\ & \Rightarrow \ \mathsf{four-point interactions} : \ (\overline{\psi}_i \Gamma \psi_i)^2 \sim - \langle \!\langle \overline{\psi}_i \Gamma \psi_i \rangle \!\rangle^2 + 2 \overline{\psi}_i \Gamma \psi_i \langle \!\langle \overline{\psi}_i \Gamma \psi_i \rangle \!\rangle \\ & \qquad \mathsf{fermionic condensate} \qquad \mathsf{fermion number density} \\ & \quad \langle \!\langle \overline{\psi}_i \psi_i \rangle \!\rangle \neq 0, \quad \rho_i \equiv \langle \!\langle \psi_i^{\dagger} \psi_i \rangle \!\rangle = \langle \!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle \!\rangle \neq 0, \quad \mathsf{others} = 0 \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Introduction Formalism Parameter set Numerical Results Gsv-dependence Summary Back up Finite density and temperature systems

### Finite density system

• Introduce the chemical potential  $\mu_i$ :

$$\begin{aligned} \mathcal{H}'_i &= \mathcal{H}^{MF}_i - \underline{\mu_i} \psi^{\dagger}_i \psi_i \\ &= -i \overline{\psi}_i \gamma \cdot \nabla \psi_i + m_i \overline{\psi}_i \psi_i - \underline{\mu_i}^{\mathsf{T}} \overline{\psi}_i \gamma^0 \psi_i - C_i \end{aligned}$$

 $\Rightarrow$  The effective chemical potential  $\mu_i^r$  :

$$\begin{split} \mu_i^r &= \mu_i - \widetilde{\mu}_i \\ &= \mu_i - 2 \left[ G_v^i + G_{sv}^i \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle^2 \right] \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle \end{split}$$

### Finite temperature system

Matsubara formalism :

$$\int \frac{d^4 \boldsymbol{p}}{i(2\pi)^4} f(p_0, \boldsymbol{p}) \longrightarrow T \sum_{n=-\infty}^{\infty} \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} f(i\omega_n + \mu_i, \boldsymbol{p})$$

Matsubara frequency :  $\omega_n = (2n+1)\pi T$  (n: integer,  $T(=1/\beta)$ : temperature)

 $\Rightarrow \ \langle\!\langle\overline{\psi}_i\psi_i\rangle\!\rangle_{(T>0)}: \ {\rm Finite-temperature\ expectation\ value\ or\ thermal\ average}$ 

ヨッ イヨッ イヨッ

Introduction Formalism Parameter set Numerical Results Gsv-dependence Summary Back up Self-consistent equation for  $m_i$ 

• NJL gap equation with  $G_{sv}^i$  :

$$m_i = -2G_s^i \left[ 1 - \frac{G_{sv}^i}{G_s^i} \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle^2 \right] \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle$$

Density-dependent scalar coupling :  $G_s^i(\rho_i)$ 

where

$$\begin{split} \langle \langle \overline{\psi}_i \psi_i \rangle \rangle &= \nu_i \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \frac{m_i}{\sqrt{\boldsymbol{p}^2 + m_i^2}} (n_+^i - n_-^i) \\ \langle \langle \overline{\psi}_i \gamma^0 \psi_i \rangle \rangle &= \nu_i \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} (n_+^i + n_-^i - 1) \end{split}$$

with

$$\begin{split} \nu_i &= 2N_f^i N_c^i, \quad n_{\pm}^i = \left[ e^{\beta (\pm \sqrt{p^2 + m_i^2} - \mu_i^r)} + 1 \right]^{-1} \\ \text{Degenerate factor} & \text{Fermion number distribution function} \\ \beta &= 1/T, \quad \mu_i^r = \mu_i - 2 \left[ G_v^i + G_{sv}^i \langle \langle \overline{\psi}_i \psi_i \rangle \rangle^2 \right] \rho_i \end{split}$$

Temperature Effective chemical potential Investigation of quark-hadron phase-transition using an extended NJL model – Hadron Group

- Hadron Group Seminars (Apr. 26, 2013, JAEA-ASRC) -

|        | Formalism |           |          |  |  |
|--------|-----------|-----------|----------|--|--|
| Stable | solution  | in gap-so | olutions |  |  |
|        |           |           |          |  |  |

#### $\triangleright$ Thermodynamic potential

- The gap equation might have more than one solution, so that a criterion is required to decide which solution is the correct one.
- Knowledge of statistical physics: Equilibrium state (for fixed T,  $\mu_i^r$ ) is given by minimizing the thermodynamic potential density  $\omega_i$ . (It is appropriate to use the thermodynamic potential since T,  $\mu_i^r$  are fixed and  $\rho_i$  can vary.)
- The stable gap-solution is the solution which corresponds to the global minimum of  $\omega_i$ .

#### $\triangleright$ Pressure

- From thermodynamic relations, thermodynamic quantities can be derived by  $\omega_q$ : Pressure is given by  $p_q(T, \mu_q) = -\omega_q(T, \mu_q)$ .
- The stable gap-solution also corresponds to the solution which leads to the largest pressure.

 $\Rightarrow$  Here, we calculate the pressure in order to determine the stable gap-solution.

(同) (ヨ) (ヨ)

|        | Formalism |  |  |  |
|--------|-----------|--|--|--|
| Pressu | re        |  |  |  |

Pressure of nuclear and quark matters :

$$p_i(T,\mu_i) = -\left[ \langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle_{(T,\mu_i)} - \langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle_{(T=0,\ \mu_i=m_i(T=0))} \right] + \mu_i \langle\!\langle \mathcal{N}_i \rangle\!\rangle + T \langle\!\langle S_i \rangle\!\rangle$$

(Normalization:  $p_i(0, m_i(T=0)) = 0$  where  $\mu_i = m_i(T=0)$  leads to  $\rho_i = 0$ )

#### where

$$\begin{split} \langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle &= \langle\!\langle \overline{\psi}_i(\boldsymbol{\gamma} \cdot \boldsymbol{p}) \psi_i \rangle\!\rangle - G_s^i \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle^2 \\ &+ G_v^i \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle^2 + G_{sv}^i \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle^2 \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle^2 \\ \langle\!\langle \mathcal{N}_i \rangle\!\rangle &= \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle = \rho_i \\ \langle\!\langle S_i \rangle\!\rangle &= -\nu_i \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \left[ n_+^i \mathrm{ln} n_+^i + (1 - n_+^i) \mathrm{ln} (1 - n_+^i) \right. \\ &+ n_-^i \mathrm{ln} n_-^i + (1 - n_-^i) \mathrm{ln} (1 - n_-^i) \left] \end{split}$$

and

$$\langle\!\langle \overline{\psi}_i (\boldsymbol{\gamma} \cdot \boldsymbol{p}) \psi_i \rangle\!\rangle = \nu_i \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \frac{\boldsymbol{p}^2}{\sqrt{\boldsymbol{p}^2 + m_i^2}} (n_+^i - n_-^i)$$

< ∃> < ∃>

< 🗇 🕨

|  | Parameter set |  |  |
|--|---------------|--|--|
|  |               |  |  |
|  |               |  |  |
|  |               |  |  |

## Numerical Results

Parameter sets for nuclear and quark matters

Investigation of quark-hadron phase-transition using an extended NJL model

医下口 医下

| Introduction |          | Parameter set |  |  |
|--------------|----------|---------------|--|--|
| Param        | eter set |               |  |  |

- Nuclear matter
  - Model parameters :  $G_s^N$ ,  $G_v^N$ ,  $G_{sv}^N$ ,  $\Lambda_N$  3-momentum cutoff
  - Conditions :

$$\begin{split} m_N(\rho_N=0) &= 939 \; \text{MeV}, \; \rho_N^0 = 0.17 \; \text{fm}^{-3} \quad \text{Normal nuclear density} \\ m_N(\rho_N=\rho_N^0) &= 0.6 m_N(\rho_N{=}0) \; \text{MeV} \quad \text{Ratio of in-medium to vacuum nucleon mass: } 0.6 \\ W_N(\rho_N=\rho_N^0) &= -15 \; \text{MeV} \quad \text{Binding energy per single nucleon:} \\ W_N(\rho_N) &= \frac{\langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle (T{=}0, \; \rho_N) {-} \langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle (T{=}0, \; \rho_N{=}0)}{\rho_N} - m_N(\rho_N{=}0) \end{split}$$

 Energy density per single nucleon W<sub>N</sub> vs Normal nuclear density ρ<sub>N</sub> / ρ<sup>0</sup><sub>N</sub>



Incompressibility of nuclear matter

$$K = 9\rho_N^0 \frac{\partial^2 W_N(\rho_N)}{\partial \rho_N^2} \Big|_{\rho_N = \rho_N^0}$$
  
~ 260 MeV

⇒ The nuclear matter saturation property is well reproduced.

医下口 医下

| Introduction |          | Parameter set |  |  |
|--------------|----------|---------------|--|--|
| Param        | eter set |               |  |  |

- Quark matter
  - Model parameters :  $G_s^q, G_{sv}^q, \Lambda_q$
  - Conditions :

 $m_q(
ho_q{=}0)=313~{
m MeV}~{
m vacuum}$  quark mass  $f_\pi=93~{
m MeV}~{
m pion}$  decay constant

• Free parameter :  $G_{sv}^q$ 

$$\begin{array}{l} \blacktriangleright \ m_q(\rho_q/3=\rho_N^0)=0.6m_q(\rho_q{=}0) \ {\rm MeV} \ \leftarrow G^q_{sv}=0 \\ m_q(\rho_q/3=\rho_N^0)=0.625m_q(\rho_q{=}0) \ {\rm MeV} \ \rightarrow G^q_{sv}\Lambda^8_q=-68.4 \\ m_q(\rho_q/3=\rho_N^0)=0.63m_q(\rho_q{=}0) \ {\rm MeV} \ \rightarrow G^q_{sv}\Lambda^8_q=-81.9 \end{array}$$

$$\succ \ m_q = -2G_s^q \ \langle\!\langle \overline{\psi}_q \psi_q \rangle\!\rangle_{(T=0)} = \frac{2}{\pi^2} G_s^q N_f N_c m_q \int_0^{\Lambda_q} d|\mathbf{p}| \frac{\mathbf{p}^2}{\sqrt{\mathbf{p}^2 + m_q^2}} = 313 \text{ MeV}$$
  
$$\succ \ f_\pi^2 = \frac{1}{2\pi^2} N_c m_q^2 \int_0^{\Lambda_q} d|\mathbf{p}| \frac{\mathbf{p}^2}{(\mathbf{p}^2 + m_q^2)^{3/2}} = (93 \text{ MeV})^2$$

 $\triangleright$  In the case of  $G_{sv}^q = 0$ ,

$$m_q(
ho_q^0/3=
ho_N^0) ~pprox~ 187~{
m MeV} \ \sim ~ {0.6\over 0} m_q(
ho_N^0=0)$$

A B > A B >

< 6 >

|        |          | Parameter set |  |  |
|--------|----------|---------------|--|--|
| Parame | eter set |               |  |  |

### • The parameter sets for nuclear (i = N) and quark matters (i = q)

[Y. Tsue, J. da Providência, C Providência and M. Yamamura, Prog. Theor. Phys. 123, (2010), 1013]

| $\Lambda_N$           | 377.8 MeV | $\Lambda_q$                             | 653.961 MeV        |
|-----------------------|-----------|-----------------------------------------|--------------------|
| $G_s^N \Lambda_N^2$   | 19.2596   | $G^q_s \hat{\Lambda}^2_a$               | 2.13922            |
| $G_v^N \Lambda_N^2$   | -1069.89  | $G_v^{\tilde{q}} \Lambda_q^{\tilde{2}}$ | 0                  |
| $G^N_{sv}\Lambda^8_N$ | 17.9824   | $G^q_{sv}\Lambda^{3\!\!8}_q$            | free <sup>*)</sup> |

\*)  $G^q_{sv} = 0, \ G^q_{sv} \Lambda^8_q = -68.4, \ G^q_{sv} \Lambda^8_q = -81.9$  [T.-G. Lee et al, PETP(2013)013D02.]

・ 同 ト ・ ヨ ト ・ ヨ ト

|  | Numerical Results |  |  |
|--|-------------------|--|--|
|  |                   |  |  |
|  |                   |  |  |
|  |                   |  |  |

## Numerical Results

with  $G^q_{sv}\Lambda^8_q = -68.4$ 

Investigation of quark-hadron phase-transition using an extended NJL model

- Hadron Group Seminars (Apr. 26, 2013, JAEA-ASRC) -

A B > A B >



 $\triangleright$  Unphysical regions which have unstable solutions

### Comparison of pressure

 $\Rightarrow$  Determine the physically realized solution (stable solution)

 $\triangleright$  The solution with largest pressure = The physically realized solution



 $\vartriangleright \ T=0 \ {\rm MeV}$ 

315

•  $\mu_q^{\text{chiral}} \approx 326 \text{ MeV}$  : Chiral phase transition •  $\rho_q^{\text{coex}} = 0.38\rho_N^0 \sim 5.41\rho_N^0$  : 1<sup>st</sup>-order phase transition  $(\rho_B = 0.13\rho_N^0 \sim 1.80\rho_N^0)$ 

280

320

 $\mu_{\alpha}$  [MeV]

T = 0

325

330

< 6 >

< ∃ > < ∃ >

T = 0

340

360

 $\Gamma = 20$ 

320

 $\mu_{\alpha}$  [MeV]

300



 $\vartriangleright \ T=20 \ {\rm MeV}$ 

315

•  $\mu_q^{\text{chiral}} \approx 323 \text{ MeV}$ : Chiral phase transition •  $\rho_q^{\text{coex}} = 1.30\rho_N^0 \sim 5.41\rho_N^0$ : 1<sup>st</sup>-order phase transition  $(\rho_B = 0.43\rho_N^0 \sim 1.80\rho_N^0)$ 

280

320

 $\mu_{\alpha}$  [MeV]

T = 0

325

330

< 6 >

< ∃ > < ∃ >

T = 0

340

360

 $\Gamma = 20$ 

320

 $\mu_{\alpha}$  [MeV]

300



 $hinspace T = 40 \,\,\mathrm{MeV}$ 

- $\mu_q^{\rm chiral} \approx 318 \; {\rm MeV}$  : Chiral phase transition
- $\rho_q^{\text{chiral}} \sim 5.78 \rho_N^0$  : 2<sup>nd</sup>-order phase transition  $(\rho_B \sim 1.93 \rho_N^0)$

 $\mu_{a}$  [MeV]

(4 同) (4 日) (4 日)

 $\mu_{a}$  [MeV]

|  | Numerical Results |  |  |
|--|-------------------|--|--|
|  |                   |  |  |
|  |                   |  |  |
|  |                   |  |  |
|  |                   |  |  |

## Quark-Hadron phase transition

with  $G^q_{sv}\Lambda^8_q = -68.4$ 

Investigation of quark-hadron phase-transition using an extended NJL model





▷ The condition for thermodynamic equilibrium

between the hadron and quark  $phases^*$ :

$$p_N(T,\mu_N) = p_q(T,3\mu_q)$$

\*) The condition for chemical equilibrium  $\,:\, \mu_N(T) = 3\mu_q(T) \,\, (= \mu_B(T))$ 





- $\mu_B^{\text{QH}} \approx 1236 \text{ MeV}$  : Quark-Hadron phase transition
- $\rho_B^{\text{coex}} = 2.64 \rho_N^0 \sim 3.63 \rho_N^0$  : 1<sup>st</sup>-order phase transition  $(\rho_N = 2.64 \rho_N^0 \sim \rho_q = 10.9 \rho_N^0)$

∃→ < ∃→</p>





 $hinspace T=20~{
m MeV}$ 

•  $\mu_B^{\text{QH}} \approx 1190 \text{ MeV}$  : Quark-Hadron phase transition

• 
$$\rho_B^{\text{coex}} = 2.49 \rho_N^0 \sim 9.99 \rho_N^0$$
 : 1<sup>st</sup>-order phase transition  
 $(\rho_N = 2.49 \rho_N^0 \sim \rho_q = 3.33 \rho_N^0)$ 

-





 $hinspace T = 40 \,\,\mathrm{MeV}$ 

• There is no crossing point.

 $\Rightarrow$  1<sup>st</sup>-order quark-hadron phase transition disappears.



• Phase diagram with  $G_{sv}^q \Lambda_q^8 = -68.4$ 



ほうしん ほう

|  |  | Gsv-dependence |  |
|--|--|----------------|--|
|  |  |                |  |
|  |  |                |  |
|  |  |                |  |
|  |  |                |  |
|  |  |                |  |

## $G^q_{sv}$ -dependence of phase diagram

Investigation of quark-hadron phase-transition using an extended NJL model



### Phase diagram with no scalar-vector interaction





Investigation of quark-hadron phase-transition using an extended NJL model



Phase diagram with scalar-vector interaction





Investigation of quark-hadron phase-transition using an extended NJL model

- Hadron Group Seminars (Apr. 26, 2013, JAEA-ASRC) -



### Phase diagram with stronger scalar-vector interaction





Investigation of quark-hadron phase-transition using an extended NJL model

- Hadron Group Seminars (Apr. 26, 2013, JAEA-ASRC) -



 $\triangleright G^q_{sv}$ -independence of the quark-hadron phase transition

- ▶ There is <u>no influence</u> on the 1<sup>st</sup>-order quark-hadron phase transition.
  - Quark-hadron phase transition occurs after chiral restoration.  $\Rightarrow m_q = 0, \; \langle\!\langle \overline{\psi}_q \psi_q \rangle\!\rangle = 0$
  - $G^q_{sv}$ -independence of pressure  $p_q$

$$\begin{split} p_q(T, \ \mu_q) &= - \left[ \langle\!\langle \mathcal{H}_q^{MF} \rangle\!\rangle_{(T,\mu_q)} - \langle\!\langle \mathcal{H}_q^{MF} \rangle\!\rangle_{(T=0, \ \rho_q=0)} \right] + \mu_q \langle\!\langle \mathcal{N}_q \rangle\!\rangle + T \langle\!\langle S_q \rangle\!\rangle \\ & \langle\!\langle \mathcal{H}_q^{MF} \rangle\!\rangle = \langle\!\langle \overline{\psi}_q(\boldsymbol{\gamma} \cdot \boldsymbol{p}) \psi_q \rangle\!\rangle - G_s^q \langle\!\langle \overline{\psi}_q \psi_q \rangle\!\rangle^2 \\ & + G_v^q \langle\!\langle \overline{\psi}_q \gamma^0 \psi_q \rangle\!\rangle^2 + G_{sv}^q \langle\!\langle \overline{\psi}_q \psi_q \rangle\!\rangle^2 \langle\!\langle \overline{\psi}_q \gamma^0 \psi_q \rangle\!\rangle^2 \\ & \mu_q^r &= \mu_q - 2 \left[ G_v^q + G_{sv}^q \langle\!\langle \overline{\psi}_q \psi_q \rangle\!\rangle^2 \right] \langle\!\langle \overline{\psi}_q \gamma^0 \psi_q \rangle\!\rangle \\ & \Rightarrow \langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle \text{ and } \mu_q^r \ \underline{do \text{ not depend on } G_{sv}^q \ due \text{ to } \langle\!\langle \overline{\psi}_q \psi_i \rangle\!\rangle = 0. \end{split}$$

# Summary

- Concluding Remarks -

Investigation of quark-hadron phase-transition using an extended NJL model

- Hadron Group Seminars (Apr.26, 2013, JAEA-ASRC) -

| Introduction |                              | Parameter set                 |                 |                                 | Summary                    |        |
|--------------|------------------------------|-------------------------------|-----------------|---------------------------------|----------------------------|--------|
| Summ         | nary                         |                               |                 |                                 |                            |        |
|              | We presente<br>Ising the ext | d the treatme<br>tended NJL m | nt of the quark | -hadron phase<br>r and quark ma | transition b<br>tters with | y<br>y |

scalar-vector eight-point interaction.

- Numerical results
  - 1<sup>st</sup>-order quark-hadron phase transition is described.
  - 1<sup>st</sup> and 2<sup>nd</sup>-order chiral phase transition is described.
  - An exotic phase, i.e., the nuclear phase, while the chiral symmetry is restored in terms of the quark matter, appears just before deconfinment.

 $\Rightarrow$  Quarkyonic-like phase [L.McLerran et al, NPA796(2007)83]



|      |     |  | Summary |  |
|------|-----|--|---------|--|
| Summ | ary |  |         |  |
|      |     |  |         |  |

We presented the treatment of the quark-hadron phase transition by using the extended NJL model for nuclear and quark matters with scalar-vector eight-point interaction.

- $G^q_{sv}$ -dependence on the phase diagram
  - ▶ Does not affect to the 1<sup>st</sup>-order quark-hadron phase transition. ⇒ The phase boundary is not changed. ( $G_{sn}^{s}$ -independence)
  - Affects the chiral phase transition. ( $G_{sv}^q$ -dependence)
    - $\Rightarrow$  Critical line of 1<sup>st</sup>-order shrinks with increasing  $G_{sv}^q$ .

 $\Rightarrow$  Moves critical end point toward a larger  $\mu_B$  and a lower T.



|      |     |  | Summary |  |
|------|-----|--|---------|--|
| Summ | ary |  |         |  |
|      |     |  |         |  |

Future work

Consideration of the color-superconducting phase

 $\Rightarrow$  Pairing interaction (CSC in quark phase, Nuclear superfluidity in nuclear phase)

▶ e.g. Quark-pair interaction  $\mathcal{L}^q_{\mathrm{C}}$  : (2SC) [Kitazawa et al, PTP108(2002)929]

$$\mathcal{L}_{c}^{q} = G_{c}^{q} \sum_{\alpha=2,5,7} \left[ (\overline{\psi}_{q} i \gamma_{5} \tau_{2} \lambda_{\alpha} \psi_{q}^{C}) (\overline{\psi}_{q}^{C} i \gamma_{5} \tau_{2} \lambda_{\alpha} \psi_{q}) + (\overline{\psi}_{q} \tau_{2} \lambda_{\alpha} \psi_{q}^{C}) (\overline{\psi}_{q}^{C} \tau_{2} \lambda_{\alpha} \psi_{q}) \right]$$

where 
$$\psi^C_q = C \overline{\psi}^T_q$$
 and  $\overline{\psi}^C_q = \psi^T_q C$  with  $C = i \gamma^2 \gamma^0$ 

Assumption of the neutron star matter

 $\Rightarrow$  Phase transition between neutron matter and quark matter ( $\Rightarrow$  Physics of neutron stars)

• e.g. Pure neutron matter ( $\nu_N = 4 \Rightarrow 2, p + e^- \rightarrow n + \mu_e$ )

伺い イラト イラト

|   |          | Parameter set | Numerical Results | Gsv-dependence | Summary | Back up |
|---|----------|---------------|-------------------|----------------|---------|---------|
|   |          |               |                   |                |         |         |
|   |          |               |                   |                |         |         |
|   |          |               |                   |                |         |         |
|   |          |               |                   |                |         |         |
|   |          |               |                   |                |         |         |
|   |          |               |                   |                |         |         |
|   |          |               |                   |                |         |         |
|   |          |               |                   |                |         |         |
|   |          |               |                   |                |         |         |
| - |          |               |                   |                |         |         |
|   | Thanl    | e vou f       | or vour           | attantia       | nl      |         |
|   | I IIdiir | x you i       | or your           | allentio       | 11:     |         |

< ∃ > < ∃ >

|  |  |  | Back up |
|--|--|--|---------|
|  |  |  |         |

## Back up

Investigation of quark-hadron phase-transition using an extended NJL model

**A** ► - Hadron Group Seminars (Apr. 26, 2013, JAEA-ASRC) -

< ∃> < ∃>

э

|        |           |       |  | Back up |
|--------|-----------|-------|--|---------|
| Expect | tation va | alues |  |         |

$$\begin{split} & \overset{\text{Expectation}}{\text{values}} \left( \begin{array}{c} \mathbf{T} = \mathbf{0} \end{array} \right) \\ & \langle \overline{\psi}_i \psi_i \rangle = -\int \frac{d^4 p}{i(2\pi)^4} \text{Tr}(iS_i(p)) = -4N_c^i N_f^i m_i \int \frac{d^4 p}{i(2\pi)^4} \frac{1}{p^2 - m_i^2 - i\epsilon} \\ & \langle \overline{\psi}_i \gamma^0 \psi_i \rangle = -\int \frac{d^4 p}{i(2\pi)^4} \text{Tr}(\gamma^0 iS_i(p)) = -4N_c^i N_f^i \int \frac{d^4 p}{i(2\pi)^4} \frac{p}{p^2 - m_i^2 - i\epsilon} \\ & \langle \overline{\psi}_i (\gamma \cdot \mathbf{p}) \psi_i \rangle = -\int \frac{d^4 p}{i(2\pi)^4} \text{Tr}(\gamma \cdot \mathbf{p} iS_i(p)) = -4N_c^i N_f^i m_i \int \frac{d^4 p}{i(2\pi)^4} \frac{p^2}{p^2 - m_i^2 - i\epsilon} \\ & \left\{ \begin{array}{c} \text{Matsubara sum} \quad \int dp_0/(2\pi) \to iT \sum_{n=-\infty}^{\infty} \\ \text{Matsubara's frequency} \quad p_4 \to \omega_n = (2n+1)\pi T \quad (T = 1/\beta \text{ ; Temperature}) \end{array} \right. \end{split}$$

 $\triangleleft$  Finite temperature values ( T=0  $\rightarrow$  T>0 )

$$\begin{split} &\langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle = \nu_i \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{m_N}{\sqrt{\mathbf{p}^2 + m_i^2}} (n_+^i - n_-^i) \\ &\langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle = \nu_i \int \frac{d^3 \mathbf{p}}{(2\pi)^3} (n_+^i + n_-^i) \\ &\langle\!\langle \overline{\psi}_i (\mathbf{\gamma} \cdot \mathbf{p}) \psi_i \rangle\!\rangle = \nu_i \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{\mathbf{p}^2}{\sqrt{\mathbf{p}^2 + m_i^2}} (n_+^i - n_-^i) \end{split}$$

$$\left\{ \begin{array}{l} \displaystyle \frac{n_{\pm}^{i} = \left[ \ e^{\beta\left(\pm\sqrt{p^{2}+m_{i}^{2}-\mu_{i}^{r}}\right)}+1 \ \right]^{-1} \ ; \ \text{ distribution functions}} \\ \nu_{i} = 2N_{f}N_{c} \ ; \ \text{degeneracy factor} \qquad n_{\pm}^{i} - n_{\pm}^{i} - 1 \\ \nu_{N} = 2N_{f}^{j}N_{c}^{N} = 2\cdot2\cdot1 = 4 \qquad \text{contribution of the occupied} \\ \nu_{q} = 2N_{f}^{j}N_{c}^{q} = 2\cdot2\cdot3 = 12 \qquad \text{should be eliminated.} \end{array} \right.$$

Investigation of quark-hadron phase-transition using an extended NJL model

 ✓ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ □
 </p>

 Hadron Group Seminars (Apr. 26, 2013, JAEA-ASRC) –

|                                 |        | Formalism | Parameter set | Numerical Results | Gsv-dependence | Back up |
|---------------------------------|--------|-----------|---------------|-------------------|----------------|---------|
| I nemodynamic potential density | Themoc | lynamic   | potential     | density           |                |         |

Thermodynamic potential density :

$$\omega_i = \langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle - \mu_i \langle\!\langle \mathcal{N}_i \rangle\!\rangle - T \langle\!\langle S_i \rangle\!\rangle$$

where

$$\begin{split} \langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle &= \langle\!\langle \overline{\psi}_i (\boldsymbol{\gamma} \cdot \boldsymbol{p}) \psi_i \rangle\!\rangle - G_s^i \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle^2 \\ &+ G_v^i \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle^2 + G_{sv}^i \langle\!\langle \overline{\psi}_i \psi_i \rangle\!\rangle^2 \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle^2 \\ \langle\!\langle \mathcal{N}_i \rangle\!\rangle &= \langle\!\langle \overline{\psi}_i \gamma^0 \psi_i \rangle\!\rangle = \rho_i \\ \langle\!\langle S_i \rangle\!\rangle &= -\nu_i \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \left[ n_+^i \mathrm{ln} n_+^i + (1 - n_+^i) \mathrm{ln} (1 - n_+^i) \right. \\ &+ n_-^i \mathrm{ln} n_-^i + (1 - n_-^i) \mathrm{ln} (1 - n_-^i) \left] \end{split}$$

and

$$\langle\!\langle \overline{\psi}_i (\boldsymbol{\gamma} \cdot \boldsymbol{p}) \psi_i \rangle\!\rangle = \nu_i \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \frac{\boldsymbol{p}^2}{\sqrt{\boldsymbol{p}^2 + m_i^2}} (n_+^i - n_-^i)$$

Minimize  $\omega_i$  w.r.t  $m_i$  and  $n_i^\pm \Rightarrow {\sf Gap}$  eq. and Fermion number distribution func.

Investigation of quark-hadron phase-transition using an extended NJL model

▲圖 → ▲ 臣 → ▲ 臣 →

э

|         |   |  |  | Back up |
|---------|---|--|--|---------|
| Pressur | е |  |  |         |

### ▶ Pressure of nuclear and quark matters :

$$p_i(T,\mu_i) = -\left[ \langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle_{(T,\mu_i)} - \langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle_{(T=0,\ \mu_i=m_i(T=0))} \right] + \mu_i \langle\!\langle \mathcal{N}_i \rangle\!\rangle + T \langle\!\langle S_i \rangle\!\rangle$$

### where

$$\langle\!\langle \mathcal{H}_i^{MF} \rangle\!\rangle_{(T=0, \ \mu_i = m_i(T=0))} = \langle \overline{\psi}_i(\boldsymbol{\gamma} \cdot \boldsymbol{p})\psi_i \rangle - G_s \langle \overline{\psi}_i \psi_i \rangle^2$$

$$\langle \cdots \rangle : \text{Zero-temperature expectation value}$$

$$\begin{split} n^i_+(T=0) &= \theta(\mu^r_i - \sqrt{\boldsymbol{p}^2 + m_i^2}) & \text{Heaviside step function} \\ &= \begin{cases} 1 & (\boldsymbol{p} < \sqrt{\mu^{r\,2}_i - m_i^2} \equiv \boldsymbol{p}_F^i) & \boldsymbol{p}_F^i : \text{Fermi momentum} \\ 0 & (\boldsymbol{p} > \sqrt{\mu^{r\,2}_i - m_i^2} \equiv \boldsymbol{p}_F^i) \end{cases} \\ n^i & (T=0) &= 1 \end{split}$$

э

|  |  |  | Back up |
|--|--|--|---------|
|  |  |  |         |
|  |  |  |         |
|  |  |  |         |

# Numerical Results

with  $G_{sv}^q = 0$ 

Investigation of quark-hadron phase-transition using an extended NJL model

(B)



• Dynamical quark mass  $m_q$ 

vs Quark chemical potential  $\mu_q$ 

 $\triangleright$  Quark number density  $\rho_q$ vs Quark chemical potential  $\mu_a$ 



 $\triangleright$  Unphysical regions which have unstable solutions

### Comparison of pressure

 $\Rightarrow$  Determine the physically realized solution (stable solution)

 $\triangleright$  The solution with largest pressure = The physically realized solution



• Pressure of quark matter  $p_a = \triangleright$  Quark number density  $\rho_a$ vs Quark chemical potential  $\mu_a$ 

vs Quark chemical potential  $\mu_a$ 



 $\succ T = 0 \text{ MeV}$ 

 $\mu_a^{
m chiral} \approx 326 \ {
m MeV}$  : Chiral phase transition  $\rho_a^{\text{coex}} = 0.28 \rho_N^0 \sim 5.41 \rho_N^0$  : 1<sup>st</sup>-order phase transition  $(\rho_B = 0.09 \rho_N^0 \sim 1.80 \rho_N^0)$ 

< ∃ > < ∃ >

< 6 >



• Pressure of quark matter  $p_a = \triangleright$  Quark number density  $\rho_a$ vs Quark chemical potential  $\mu_a$ 

vs Quark chemical potential  $\mu_a$ 



ightarrow T = 50 MeV

 $\mu_a^{
m chiral} \approx 305 {
m MeV}$  : Chiral phase transition  $\rho_a^{\text{coex}} = 2.76 \rho_N^0 \sim 5.57 \rho_N^0$  : 1<sup>st</sup>-order phase transition  $(\rho_B = 0.92 \rho_N^0 \sim 1.86 \rho_N^0)$ 

< ∃> < ∃>

< 6 >



• Pressure of quark matter  $p_a = >$  Quark number density  $\rho_a$ vs Quark chemical potential  $\mu_a$ 

vs Quark chemical potential  $\mu_a$ 



ightarrow T = 100 MeV

- $\mu_{q}^{\text{chiral}} \approx 263 \text{ MeV}$  : Chiral phase transition
- $\rho_a^{\text{chiral}} \sim 6.33 \rho_N^0$  : 2<sup>nd</sup>-order phase transition<sup>\*)</sup>  $(\rho_B \sim 2.11 \rho_N^0)$

- 4 回 > - 4 回 > - 4 回 >

|  |  |  | Back up |
|--|--|--|---------|
|  |  |  |         |
|  |  |  |         |
|  |  |  |         |

# Numerical Results

with  $G^q_{sv}\Lambda^8_q=-81.9$ 

Investigation of quark-hadron phase-transition using an extended NJL model

3



 $\triangleright$  Unphysical regions which have unstable solutions

### Comparison of pressure

 $\Rightarrow$  Determine the physically realized solution (stable solution)

 $\triangleright$  The solution with largest pressure = The physically realized solution



 $hinspace T = 0 \, \, \mathrm{MeV}$ 

•  $\mu_q^{\text{chiral}} \approx 326 \text{ MeV}$  : Chiral phase transition •  $\rho_q^{\text{coex}} = 0.29\rho_N^0 \sim 5.43\rho_N^0$  : 1<sup>st</sup>-order phase transition  $(\rho_B = 0.10\rho_N^0 \sim 1.81\rho_N^0)$ 

< ∃> < ∃>

< 6 >



ightarrow T = 30 MeV

- $\mu_q^{\text{chiral}} \approx 323 \text{ MeV}$  : Chiral phase transition
- $\rho_q^{\text{chiral}} \sim 5.71 \rho_N^0$  : 2<sup>nd</sup>-order phase transition<sup>\*)</sup> ( $\rho_B \sim 1.90 \rho_N^0$ )

(人間) シスヨン スヨン