The Missing Baryons Problem and the Need for Hadronic Data of the $(\pi, 2\pi)$ Reaction

Ken Hicks (Ohio University) JAEA Seminar April 11, 2012

Outline

- Review of quark model of baryons
- Lattice QCD predictions of baryons
- EBAC: extracting resonance properties
- Review of existing $(\pi, 2\pi)$ data
- CLAS: 2π Photoproduction Data
- Experiment to measure (π ,2 π) at J-PARC

Review: the Quark Model

The SU(6) model $(SU(3)_f \times SU(2)_{spin})$ gives for 3-quarks:

$$\mathbf{6}\otimes\mathbf{6}\otimes\mathbf{6}=\mathbf{56}_{S}\oplus\mathbf{70}_{M}\oplus\mathbf{70}_{M}\oplus\mathbf{20}_{A}$$

Where the multiplets are made up of octets and decuplets:

Ground State:
$$\mathbf{56} = {}^{4}\mathbf{10} \oplus {}^{2}\mathbf{8}$$

Excited States: $\mathbf{70} = {}^{2}\mathbf{10} \oplus {}^{4}\mathbf{8} \oplus {}^{2}\mathbf{8} \oplus {}^{2}\mathbf{1}$ $\mathbf{20} = {}^{2}\mathbf{8} \oplus {}^{4}\mathbf{1}$, Ground State $56_{s} = ^{2}8 + ^{4}10$ Baryons (J=3/2) Baryons (J=1/2) У Δ (1232) Ν Λ Σ* (1385) Σ \mathbf{I}_3 Ξ **Ξ*** (1533) **Ω**⁻ (1672)

У

1

0

	Decu	aldr	et As	ssign	n	nents	(PDC	G)
L=0 .	$\int 3/2^+$	(56,0)	$\frac{-}{1}$) $3/2$	$\Delta(1232)$	2)	$\Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$
	$3/2^{+}$	(56,0)	$\frac{+}{2}$) 3/2	$\Delta(1600$	0)	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
L=1 -	$1/2^{-}$	(70,1]	$(-1)^{-}$ 1/2	$\Delta(1620$	0)	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
	$3/2^{-}$	(70,1]	$(-1)^{-}$ 1/2	$\Delta(1700$	0)	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
l =2	$\int 5/2^+$	(56, 2)	$\frac{+}{2}$) 3/2	$\Delta(190)$	5)	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
	$7/2^+$	(56, 2)	$\frac{+}{2}$) 3/2	$\Delta(1950$	0)	$\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$
L=4	$11/2^{+}$	(56, 4)	$^+_1) 3/2$	$\Delta(2420$	0)	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
			-	1				
			From π-	-scatt.		Lots of m	issing state	es!
			database: all			Lack of K-scatt. data or		
			iut					

Octet Assignments (PDG)

	J^P	(D, L_N^P)	S		Octet n	nembers		Singlets
L=0	$\int 1/2^+$	$(56,0^+_0)$	1/2 N	(939)	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	
	$1/2^{+}$	$(56,0^+_2)$	1/2 N	(1440)	Octet members Singlets $A(1116)$ $\Sigma(1193)$ $\Xi(1318)$ $A(1600)$ $\Sigma(1660)$ $\Xi(?)$ $A(1670)$ $\Sigma(1620)$ $\Xi(?)$ $A(1670)$ $\Sigma(1670)$ $\Xi(1820)$ $A(1690)$ $\Sigma(1670)$ $\Xi(1820)$ $A(1690)$ $\Sigma(1670)$ $\Xi(1820)$ $A(1800)$ $\Sigma(1750)$ $\Xi(?)$ $A(1830)$ $\Sigma(1775)$ $\Xi(?)$ $A(1810)$ $\Sigma(1880)$ $\Xi(?)$ $A(1890)$ $\Sigma(?)$ $\Xi(?)$ $A(1820)$ $\Sigma(1915)$ $\Xi(2030)$			
	$1/2^{-}$	$(70,1^{-}_{1})$	1/2 N	(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi(?)$	$\Lambda(1405)$
	$3/2^{-}$	$(70,1^{-}_{1})$	1/2 N	(1520)	$\Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
L=1 _	$1/2^{-}$	$(70,1^{-}_{1})$	3/2 N	(1650)	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
	$3/2^{-}$	$(70,1^{-}_{1})$	3/2 N	(1700)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
	$5/2^{-}$	$(70,1^{-}_{1})$	3/2 N	(1675)	A(1830)	$\Sigma(1775)$	$\Xi(?)$	
L=0	$1/2^{+}$	$(70,0^+_2)$	1/2 N	(1710)	$\Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(?)$
l =2	$3/2^{+}$	$(56,2^+_2)$	1/2 N	(1720)	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
	$5/2^{+}$	$(56,2^+_2)$	1/2 N	(1680)	A(1820)	$\Sigma(1915)$	$\Xi(2030)$	
Mass	hierar	chy prob	lem					
with l	_=1, S=	3/2 !!		Here are tl	, there a ney corre	re more ect?? (Ma	assignm aybe)	nents, bu

Phenomenology: L and S

Negative parity baryons:

L; S	$J^P = 1/2$	J = 3/2	J = 5/2
L=1; S=1/2	$N_{1/2^{-}}(1535)$	$N_{3/2^-}(1520)$	
L=1;S=3/2	$N_{1/2^{-}}(1650)$	$N_{3/2^{-}}(1700)$	$N_{5/2^{-}}(1675)$
L=1;S=1/2	$\Delta_{1/2^{-}}(1620)$	$\Delta_{3/2^{-}}(1700)$	

Positive parity baryons:

L; S	$J^P = 1/2^+$	$3/2^+$	$5/2^+$	$7/2^+$
L=2;S=1/2		$N_{3/2^+}(1720)$	$N_{5/2^+}(1680)$	
L=2;S=3/2	$N_{1/2^+}(1880)$	$N_{3/2^+}(1900)$	$N_{5/2^+}(2000)$	$N_{7/2^+}(1990)$
L = 2; S = 3/2	$\Delta_{1/2^+}(1910)$	$\Delta_{3/2^+}(1920)$	$\Delta_{5/2^+}(1905)$	$\Delta_{7/2^+}(1950)$

Masses seem to line up for a given value of L, S, not J! SU(6) wavefunction: the fraction of "good" qq depends on S.

Masses: Exp vs. model (PDG)

In general, the quark model does a poor job describing N* masses. Also, many QM states are missing!

Image from PDG

Capstick & Roberts (1993)

Model state	$ A_{N\pi} $	$N\pi$ state	Rating	$\sqrt{\Gamma_{\rm tot}}({\rm BR})_{N\pi}$
	$(MeV^{\frac{1}{2}})$	assignment		$(MeV^{\frac{1}{2}})$
$[N\frac{1}{2}^{-}]_{1}(1460)$	14.7 ± 0.5	$N\frac{1}{2}^{-}(1535)$	****	$8.0{\pm}2.8$
$[N\frac{1}{2}^{-}]_{2}(1535)$	12.2 ± 0.8	$N\frac{1}{2}^{-}(1650)$	****	$8.7{\pm}1.9$
$[N\frac{3}{2}^{-}]_{1}(1495)$	8.6 ± 0.3	$N\frac{3}{2}^{-}(1520)$	****	$8.3{\pm}0.9$
$[N\frac{3}{2}^{-}]_{2}(1625)$	5.8 ± 0.6	$N\frac{3}{2}^{-}(1700)$	***	$3.2{\pm}1.3$
$[N\frac{5}{2}^{-}]_1(1630)$	5.3 ± 0.1	$N\frac{5}{2}^{-}(1675)$	***	$7.7{\pm}0.7$
$[N\frac{1}{2}^+]_2(1540)$	$20.3^{+0.8}_{-0.9}$	$N\frac{1}{2}^+(1440)$	****	$19.9{\pm}3.0$
$[N\frac{1}{2}^+]_3(1770)$	4.2 ± 0.1	$N\frac{1}{2}^{+}(1710)$	***	$4.7{\pm}1.2$
$[N\frac{1}{2}^+]_4(1880)$	$2.7^{+0.6}_{-0.9}$			
$[N\frac{1}{2}^+]_5(1975)$	$2.0^{+0.2}_{-0.3}$			
$[N\frac{3}{2}^+]_1(1795)$	14.1 ± 0.1	$N\frac{3}{2}^+(1720)$	****	$5.5{\pm}1.6$
$[N\frac{3}{2}^+]_2(1870)$	$6.1^{+0.6}_{-1.2}$			
$[N\frac{3}{2}^+]_3(1910)$	$1.0^{+0.1}_{-0.2}$			
$[N\frac{3}{2}^+]_4(1950)$	$4.1_{-0.7}^{+0.4}$			
$[N\frac{3}{2}^+]_5(2030)$	1.8 ± 0.2			

Even 20 years ago, this problem was known! (Note: just $N\pi$ PWA.)

Lattice QCD Calculations

Lattice: Roper Resonance

- Bayesian statistics and constrained curve fitting
- N*(1440) crosses over at low pion mass (quenched)
- Not all theorists accept this chiral extrapolation.

New Lattice Calculations

Reference: J. Dudek et al.,, arXiv:1201.2349

Projection of N* to ^SL_J

EBAC: Excited Baryon Analysis Center

N^Δ Transition Form Factor (GM) from EBAC analysis

One third of G*M at low Q² is due to contributions from meson–baryon (MB) dressing:

In the relativistic QM framework, the bare-core contribution is well described by the three-quark component of the wavefunction.

The area of Q2<7.0 GeV2 is far from pQCD domain

B.Julia-Diaz et al., PRC 69, 035212 (2004)

Dynamical coupled-channels model of EBAC

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

 \checkmark Partial wave (LSJ) amplitude of a \rightarrow b reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

Reaction channels:

coupled-channels effect

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma, \cdots)$$

Transition potentials: $\pi \pi N$

$$V_{a,b} = v_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$
Meson-exchange potentials
(Derived from Lagrangians) bare N* states

Hadron Structure with Electromagnetic Probes

Quark mass extrapolated to the chiral limit, where *q* is the momentum variable of the tree-level quark propagator (curve=DSE, data=LQCD).

P₁₁(1440) couplings from CLAS

World data for $H(\pi, 2\pi)$ Reaction

The Primary Source of $(\pi, 2\pi)$

Nuclear Physics B78 (1974) 233-250. North-Holland Publishing Company

EXPERIMENTAL RESULTS ON π^-p INTERACTIONS IN THE CM ENERGY RANGE 1.50 – 1.74 GeV

J. DOLBEAU, M. NEVEU, F.A. TRIANTIS^{*} and C. COUTURES Departement de Physique des Particules Elementaires, CEN, Saclay

Received 21 March 1974

Abstract: Channel cross sections, elastic differential cross sections and single pion production mass spectra and angular distributions are presented for πp interactions, based on 139 000 events observed at six energies in the center of mass region 1.50 - 1.74 GeV.

Complete (π , 2π) Database

M. Manley, Phys. Rev. D 30, 904 (1984).

W (MeV)	$\pi^+\pi^-n$	$\pi^0\pi^-p$	$\pi^0\pi^+p$	$\pi^+\pi^+n$	Total
1340±20	1664	11	0	0	1675
1375±15	3893	145	15	2	4055
1400 ± 10	3646	826	63	15	4550
1440 ± 10	3790	1339	207	48	5384
1460 ± 10	2074	971	152	36	3233
1480 ± 10	7246	3776	537	128	11 687
1500 ± 10	6224	4055	1160	250	11689
1520 ± 10	5650	4671	795	143	11259
1540 ± 10	6230	5320	1115	183	12848
1565±15	2237	1598	2704	481	7020
1595±15	3065	1962	2864	483	8374
1620 ± 10	0	· 0	4203	621	4824
1640±10	7437	4177	7939	1013	20 566
1660±10	7411	4273	4071	752	16 507
1680 ± 10	8784	5340	4999	847	19970
1700±10	8377	5394	5375	1007	20153
1725±15	6265	4594	5679	524	17 062
1755±15	5442	4200	1316	18	10 976
1790±20	1966	1352	4715	228	8261
1830 ± 20	3543	2223	2322	0	8088
1870±20	4342	3382	8190	557	16471
1910±20	6036	4081	6445	0	16 562
Total	105 322	63 690	64 866	7336	241 214

TABLE 1. Summary of the number of events analyzed at each energy,

Total number of events!

Total Cross Sections

Mass Projections

Note: the normalization of these data is uncertain. The total cross sections were used to set the vertical scale.

The solid curves are the full calculation. The other curves do not include some coupled-channels effects.

CLAS: 2π Photoproduction Data

CLAS: e p \rightarrow e' p $\pi^{+} \pi^{-}$

The BLUE dotted curve uses only the known resonances from the Particle Data Group.

The RED solid curve includes an extra resonance not seen from the PWA of π N data alone.

CLAS: Partial Wave Analysis

CLAS data - 2.94<y2/d.p.<3.15 Γ_{tot} MeV **BF(**πΔ) Μ. BF(pp) GeV % % 1.728± P₁₃(1720) 66±26 16±11 133±19 CLAS 0.005 1.70 -70-85 P₁₃(1720) 150-300 comp. PDG 1.75 with 0.

hadronic parameters of 3/2⁺(1725) candidate state as well as of others N*'s were varied within PDG uncertainties - 2.78< χ^2 /d.p.<2.9

A new P₁₃ resonance, much lower in mass than the quark model prediction, is necessary to fit the data.

J-PARC Experiment

K1.8 beamline with TPC

Same TPC as for H-dibaryon

Pion beam enters between the magnet coils.

Enlarged view of the TPC with the target off-center. Note: LH2 target would come in from the top.

Count Rate Estimates

Assume a total cross section for $(\pi, 2\pi)$ of 10 mb.

Pion beam rate is about 10⁶ (per 6 second spill).

Liquid Hydrogen target of length 5 cm.

TPC acceptance of 50% (70% for each particle)

100% computer livetime (using event buffering)

Result: 1000 events per spill.

Beam Time Estimate

Need wide energy coverage: W=1.35 – 2.15 GeV

Take small energy steps: ΔW =0.025 (30 beams)

Need both π^+ and π^- beams

Angular distributions: take 20 angle bins

10,000 counts per bin (multi-dimensional analysis)

Result: Need a total of 20 shifts (plus overhead)

Other Considerations

- Trigger: 2 charged particles.
- Elastic scattering increases rates by 2.
- \rightarrow Data acquisition may be near the limit
- \rightarrow Most of elastic events go to forward spect.
- Detailed simulations are needed to understand the trigger rates!
- Acceptance factors are just estimated!

Experimental Summary

With just 20 shifts of beamtime on the K1.8 line with the TPC could increase the database for $(\pi, 2\pi)$ by several orders of magnitude.

These data are necessary if we want to solve the problem of the N* spectrum.

General Summary

The N* spectrum is a long-standing problem.

- Today, we know that dynamical coupledchannels calculations are needed.
- \rightarrow Coupled channels requires hadronic data.
- \rightarrow Many N* states couple to 2π decay.
- Without quality $(\pi, 2\pi)$ data, it is difficult to see how the N* spectrum can be extracted.

The experiment can only be done at J-PARC.