Charmed Deuteron

Makoto Oka Tokyo Institute of Technology

11/11/11 @ JAEA/ASRC/ Hadron Group

Contents

- 1. Introduction
- 2. Heavy-Quark Symmetry and Effective Lagrangian
- 3. One Boson Exchange Potential
- 4. Charmed Deuteron
- 5. Conclusion

References

- Yan-rui Liu, M.O., "Λ_cN bound states revisited", arXiv:1103.4624
- Wakafumi Meguro, Yan-rui Liu, M.O., "Possible Λ_cΛ_c molecular bound state", Phys. Lett. B704 (2011) 547, arXiv:1105.3693

Discoveries of New Quarkonium-like Mesons

- X (3872): The new charmonium-like resonance (1^{++}) just at the DD* threshold may not be a simple $c\bar{c}$, but possibly a $(c\bar{c}q\bar{q})$ tetra-quark, or $(D\bar{D}^* + D^*\bar{D})$ molecule.
- Note: At around the threshold, hadron molecular states are necessarily mixed.

Takeuchi, Shimizu, Takizawa, (arXiv:1110.3694) A quark-model QQ^{bar} state is coupled to the two hadron bound/continuum states.

This is not new, but has been seen in the strange sector;

 Λ^* (1405) coupled to the NK^{bar} f₀, and a₀ scalar mesons to KK^{bar} H dibaryon to ΛΛ, NΞ, ΣΣ

May have more hadron molecules with heavy quark(s).

I Do dibaryons (baryon molecules) with heavy quarks exist? $\Lambda_c N, \Sigma_c N, \ldots$, (charmed deuteron) $\Xi_c N, \Lambda_c \Lambda_c, \Lambda_c \Sigma_c, \ldots$ (doubly charmed deuteron)

Do the charmed baryons, Λ_c, Σ_c, Ξ_c, ..., form nuclear bound states? Charmed hypernucleus

Do the charmed mesons, D, D*, ..., form mesonic nuclear bound states? *i.e.*, HQ version of the K^{bar}-nucleus

Not a new idea:

Possibility of Charmed Hypernuclei

C. B. Dover and S. H. Kahana

PRL 39, 1506 (1977)

We suggest that both two-body and many-body bound states of a charmed baryon and nucleons should exist. Estimates indicate binding in the ${}^{1}S_{0}$ state of $C_{1}N$ $(I = \frac{3}{2})$ and SN (I = 1). We further estimate the binding energy of C_{0}, C_{1} in various finite nuclei.

 $\Sigma_{\rm c}$

Λc

H. Bando, S. Nagata, PTP 69, 557 (1983), H. Bando, PTP S81, 197 (1984)

Binding energies of a flavour baryon, Λ (strange), Λ_c (charmed) and Λ_b (beauty), in nuclear matter and in the *a*-particle are investigated within the framework of the lowest-order Brueckner theory by employing the OBE potentials derived on the basis of the Nijmegen model Dinteraction.

- SU(4) extension of the Nijmegen HC model potential is employed.
- No K, K* exchanges are allowed for the Λ_cN, which results in the weaker Y_cN potential compared with ΛN.
- No 2-body bound state is found.

- **We reexamine the possibility of the Y**_cN and Y_cY_c bound states from the modern view points of the heavy quark symmetry and chiral symmetry.
- **#** Advantages of the heavy baryon systems:
 - The large mass of Y_c suppresses the kinetic energy.
 - Strong Y_c-Y^{*}_c channel couplings give extra attractions.
- We emphasize the importance of the Σ_c Σ_c* degeneracy under the heavy quark spin symmetry and the couplings of the Σ_cN, Σ_c*N virtual states to the Λ_cN states through the central and tensor forces.

NN (¹ S ₀ , I=1)	×	$NN(^{3}S_{1}-^{3}D_{1}, I=0)$	deuteron
ΛN - ΣN ($^{1}S_{0}$)	×	$\Lambda N - \Sigma N (^{3}S_{1} - ^{3}D_{1})$	×
$\Lambda_{c}N-\Sigma_{c}N-\Sigma^{*}{}_{c}N\left({}^{1}S_{0}-{}^{5}D_{0}\right)$?	$\Lambda_{c}N-\Sigma_{c}N-\Sigma^{*}{}_{c}N\left({}^{3}\mathrm{S}_{1}-{}^{3,5}\mathrm{D}_{1}\right)$?
$ΛΛ-NΞ-ΣΣ$ ($^{1}S_{0}$)	H dibaryon		
$\Lambda_c \Lambda_c - \Sigma_c \Sigma_c - \Sigma^* c \Sigma^* c (0^+)$			这些公式

- **H** Our framework:
- The Y_c-N and Y_c-Y_c interactions are composed of one-pion or one-boson (π, σ, ρ, ω) exchange potentials.
- Heavy-quark spin symmetry, chiral symmetry, and hidden local symmetry are used to determine the meson-baryon couplings.
- The OPE tensor force induces strong mixings of the D-wave Σ_cN (S=1) and Σ^{*}_cN (S=1, 2) states, whose thresholds are degenerate in the large m_Q limit.

The heavy quark (c, b) is "inactive" in the heavy-light hadron systems.

$$\Lambda_Q = \left[Q \oplus \left[ud\right]_{f=\bar{3}}^{S=0}\right]^{J=1/2}$$

$$\Sigma_Q = \left[Q \oplus \{ud\}_{f=\bar{6}}^{S=1}\right]^{J=1/2}$$

$$\Sigma_Q^* = \left[Q \oplus \{ud\}_{f=\bar{6}}^{S=1}\right]^{J=3/2}$$

Σ 1193

A 1116

<u>Λc 2286</u> <u>Λb 5620</u>

- **#** Spectra of the heavy-light hadrons are insensitive to m_Q.
- **#** The spin-dependent interactions are $O(1/m_Q)$ for the heavy quarks.

- **#** Physics of heavy quark systems is simplified for $m_Q \gg \Lambda_{QCD}$
- **\blacksquare** Light quarks do not feel the mass and spin of the heavy quark in the $m_Q \rightarrow \infty$ limit.
 - asymptotic freedom
 - suppressed magnetic-gluon coupling
- Effective field theory based on the 1/m_Q expansion, which leads to a super-selection rule of the heavy quark velocity.

 $p^{\mu} = m_Q v^{\mu} + k^{\mu}$

For small $k^{\mu} = O(\Lambda_{QCD}) \ll m_Q v^{\mu}$, the velocity of the heavy quark is preserved. Then, we can remove the large momentum component by defining a new effective heavy quark field $Q_v(x) = e^{im_Q v \cdot x}Q(x)$.

- **#** This is a symmetry of QCD in the large m_Q regime.
- **#** The heavy quark spin is conserved at each velocity. (HQ spin symmetry)

- **Effective Lagrangian with the heavy-baryon and light mesons** #
 - Heavy baryon Q(qq): qq (di-quark) $(S, f) = (0^+, 3^{bar})$ or $(1^+, 6)$
 - → $(S, f) = (1/2, 3^{\text{bar}}) \oplus [(1/2, 6) \oplus (3/2, 6)]$ degenerate in the HQ limit

Pseudoscalar and vector nonet mesons

Vector nonet mesons

- **H** Chiral and Hidden-Gauge symmetries for light quarks/hadrons
 - Chiral transform SU(3)_L×SU(3)_R

$$\Sigma = e^{i\Pi(x)} = \xi^2(x)$$
 $\Sigma \to g_L \Sigma g_R^{\dagger}$

Hidden Local Gauge Symmetry: $h(x) \in SU(3)$

$$\begin{split} \Sigma &= LR^{\dagger} & L \to g_L Lh^{\dagger}(x) & R \to g_R Rh^{\dagger}(x) & B_f \to h B_f h^{\dagger} \\ \\ \Gamma_{\mu} &= \frac{1}{2} (L^{\dagger} \partial_{\mu} L + R^{\dagger} \partial_{\mu} R) & A_{\mu} &= \frac{1}{2} (L^{\dagger} \partial_{\mu} L - R^{\dagger} \partial_{\mu} R) \\ \\ \hline \Gamma_{\mu} &\to h \Gamma_{\mu} h^{\dagger} + h \partial_{\mu} h^{\dagger} & A_{\mu} \to h A h^{\dagger} \end{split}$$

Light Vector mesons

$$V_{\mu} \to h V_{\mu} h^{\dagger} + h \partial_{\mu} h^{\dagger} \qquad F^{\mu\nu} = \partial^{\mu} V^{\nu} - \partial^{\nu} V^{\mu} + [V^{\mu}, V^{\nu}]$$

$$\mathcal{L} = -rac{f^2}{2} \left\{ {
m Tr}[A_{\mu}A^{\mu} + a {
m Tr}[(\Gamma_{\mu} - V_{\mu})^2] \right\} + rac{1}{2g_V^2} {
m Tr}[F_{\mu
u}F^{\mu
u}]$$

Heavy-Quark-Chiral Effective Lagrangian

$$\mathcal{L}_{B_{3}} = \frac{1}{2} \operatorname{tr}[\bar{B}_{3}(iv \cdot D)B_{3}] + i\beta_{B}\operatorname{tr}[\bar{B}_{3}v^{\mu}(\Gamma_{\mu} - V_{\mu})B_{3}] + \ell_{B}\operatorname{tr}[\bar{B}_{3}\sigma B_{3}]$$

$$\mathcal{L}_{S} = -\operatorname{tr}[\bar{S}^{\alpha}(iv \cdot D - \Delta_{B})S_{\alpha}] + \frac{3}{2}g_{1}(iv_{\kappa})\epsilon^{\mu\nu\lambda\kappa}\operatorname{tr}[\bar{S}_{\mu}A_{\nu}S_{\lambda}] + i\beta_{S}\operatorname{tr}[\bar{S}_{\mu}v_{\alpha}(\Gamma^{\alpha} - V^{\alpha})S^{\mu}] + \lambda_{S}\operatorname{tr}[\bar{S}_{\mu}F^{\mu\nu}S_{\nu}] + \ell_{S}\operatorname{tr}[\bar{S}_{\mu}\sigma S^{\mu}]$$

$$\mathcal{L}_{int} = g_{4}\operatorname{tr}[\bar{S}^{\mu}A_{\mu}B_{\bar{3}}] + i\lambda_{I}\epsilon^{\mu\nu\lambda\kappa}v_{\mu}\operatorname{tr}[\bar{S}_{\nu}F_{\lambda\kappa}B_{\bar{3}}] + h.c.,$$

$$\Delta_{B} = M(B_{6}) - M(B_{\bar{3}})$$

$$\mathcal{L}_{N} = -\frac{g_{A}}{2f}\bar{N}\gamma^{\mu}\gamma^{5}\partial_{\mu}(\pi^{i}\tau^{i})N - h_{\sigma}\bar{N}\sigma N - h_{V}\bar{N}\gamma^{\mu}(\tau^{i}\rho_{\mu}^{i} + \omega_{\mu})N - h_{T}\bar{N}\sigma^{\mu\nu}\partial_{\mu}(\tau^{i}\rho_{\nu}^{i} + \omega_{\nu})N.$$

A flavor singlet (I=0) scalar σ meson is introduced.

Coupling constants

π' 01 01

n. 91,	94				
$\sigma: \ell_B$, ℓ_S				
$ ho,\omega$:	$\beta_B, \beta_S, \lambda_S,$	λ_I linear sigm	a model	Σ	$\Sigma_{\rm c} \rightarrow \Lambda_{\rm c} + \pi$
Couping	Quark Model	Chiral Multiplet	VMD	QSR	Decay
g_1	1.00				×
g_4	1.06			0.94	0.999
ℓ_B	-3.65	$-\frac{\Delta M}{2f_{\pi}} \approx -3.1$			
ℓ_S	7.30	$\frac{\Delta \dot{M}}{f_{\pi}} \approx 6.2$			
$(\beta_B g_V)$	-6.0		≈ -5.04		
$(\beta_S g_V)$	12.0		≈ 10.08	151	
$(\lambda_S g_V)$	$19.2 { m GeV^{-1}}$		and a second second	$21.0, 13.5 \text{ GeV}^{-1}$	
$(\lambda_I g_V)$	-6.8 GeV^{-1}				
g_A	1.25		S		
h_{σ}	10.95			14.6	
h_V	3.0				
h_T	6.4 GeV^{-1}				

Table: The coupling constants in different methods. For the quark model estimation, we use $g_A^q = 0.75$, $g_\sigma^q = 3.65$, $g_\rho^q = 3.0$, and $f_\rho^q = 0.0$.

The mesons couple to the light quarks only.

OBEP

- The Λ_c-N, Σ_c-N and Σ^{*}_c-N diagonal and transition potentials are composed of one-pion and/or one-boson (π, σ, ρ, ω) exchange model. Note that the Λ_c (in general the 3^{bar} baryon) does not couple to the pion (pseudoscalar meson) directly. The other possible mesons, η and φ, are neglected because they give little contribution.
- Short range part of the potential is implemented by the cutoff parameters in the form factors.
 - The monopole form factor for each vertex is taken into account. $F(q) = \frac{\Lambda^2 - m^2}{\Lambda^2 - q^2}$
 - The cutoff parameters are chosen in two ways:
 - (1) The *universal* cutoff for all the mesons
 - (2) The scaled cutoff $\Lambda = m + \alpha \Lambda_{QCD} (\Lambda_{QCD}=220 \text{ MeV})$

OBEP

- **#** Standard meson exchange potential with monopole form factors
 - Neglect O(1/M_Q) corrections and the contact terms.

 $\Lambda_c N$: 0⁺ $\Lambda_c N({}^1S_0) - \Sigma_c N({}^1S_0) - \Sigma_c^* N({}^5D_0)$ Diagonal potentials with $\Lambda_{\pi} = \Lambda_{\sigma} = \Lambda_{\text{vec}} = 1$ GeV

 $\Lambda_c N$: 0⁺ Transition potentials with $\Lambda_{\pi} = \Lambda_{\sigma} = \Lambda_{\text{vec}} = 1$ GeV

$$\Lambda_c N: 0^+ \qquad \Lambda_c N({}^1S_0) - \Sigma_c N({}^1S_0) - \Sigma_c^* N({}^5D_0)$$

OPEP model:

One Pion Exchange Only

 $\Lambda_c N: 0^+ \qquad \Lambda_c N({}^1S_0) - \Sigma_c N({}^1S_0) - \Sigma_c^* N({}^5D_0)$ OMEP model ($\Lambda_{\text{com}} \& \alpha$)

$\begin{array}{l} \Lambda_c N: \ 0^+ \ \& \ 1^+ \\ \textbf{OMEP model (} \Lambda_{com} \textbf{)} \end{array} \qquad \begin{array}{l} \Lambda_c N(^1S_0) - \Sigma_c N(^1S_0) - \Sigma_c^* N(^5D_0) \\ \Lambda_c N(^3S_1 - {}^3D_1) - \Sigma_c N(^3S_1 - {}^3D_1) - \Sigma_c^* N(^3S_1 -$

 $\Lambda_c N$: comparison

J^P		$\Lambda_c N$ (S-wave)	$\Lambda_c N - \Sigma_c N - \Sigma_c^* N$
0^{+}	OPEP (Λ)	×	[1.367: 13.60, 1.38]
	OMEP (Λ)	[0.900: -1.24, 3.86]	[0.900: 13.60, 1.46]
	OMEP (α)	[1.533: -0.25, 8.13]	[1.533: 13.57, 1.37]
1+	OPEP (Λ)	×	[1.353: 13.54, 1.40]
	OMEP (Λ)	[0.900: -1.24, 3.86]	[0.900: 13.49, 1.47]
	OMEP (α)	[1.618: -0.80, 4.72]	[1.618: 13.47, 1.39]

Table: Comparison among different cases. The meaning of the numbers are [cutoff Λ_{com} in GeV or dimensionless α : B.E. in MeV, RMS radius in fm]. $(\Lambda = m_{meson} + \alpha \Lambda_{QCD})$

For the coupled channel calculation, one may get similar binding energies (and the corresponding RMS radiuses) in the OMEP model and in the OPEP model.

 $\Lambda_c \Lambda_c (J^P = 0^+)$: Only OPEP model Diagonal potentials ($\Lambda_{\pi} = 1$ GeV)

For the $\Lambda_c \Lambda_c$ systems, we take only the one-pion exchange interaction.

Note that there is no $\pi \Lambda_c \Lambda_c$ coupling, and thus the binding comes only from the channel coupling effect.

Again the tensor coupling strength is very strong so that the $\Sigma^* {}_c \Sigma^* {}_c$ channel contribution is large.

(22): $\Sigma_c \Sigma_c({}^1S_0) \to \Sigma_c \Sigma_c({}^1S_0)$ (25): $\Sigma_c \Sigma_c({}^1S_0) \to \Sigma_c \Sigma_c^*({}^5D_0)$ (34): $\Sigma_c^* \Sigma_c^*({}^1S_0) \to \Sigma_c^* \Sigma_c^*({}^5D_0)$

 $\Lambda_c \Lambda_c (J^P = 0^+)$: Only OPEP model

Λ (GeV)	1.0	1.1	1.2	1.3
B.E. (MeV)	3.39	14.45	35.44	68.37
$\sqrt{\langle r^2 \rangle}$ (fm)	2.0	1.2	0.9	0.7
Prob. (%)	(97.4,0.2,0.2,	(94.3,0.5,0.5,	(90.7,1.1,1.0,	(86.8,1.8,1.8,
	0.6,1.6)	1.3,3.4)	2.0,5.2)	2.6,7.0)
D-wave prob.	2.2%	4.7%	7.2%	9.6%

Charmed deuteron

- **#** How to find it
 - Production

Heavy ion collision + coalescence High energy collision + fragmentation $D^+ + {}^{3}He => (\Lambda_c p) + p$?

 Decay nonmesonic weak decays via pion exchange

> $(\Lambda_c^+n)_{BS} \rightarrow \Lambda p \rightarrow pp\pi^ (\Lambda_c^+p)_{BS} \rightarrow pp$ (Cabibbo suppressed)

Conclusion

- **\blacksquare** Possibility of bound Charmed deuteron ($\Lambda_c N$, or $\Lambda_c \Lambda_c$ bound states) has been studied in the one-boson exchange potential approach.
- The effective Lagrangian is derived from the *heavy-quark spin symmetry* for charm quarks as well as *chiral symmetry* and *hidden local symmetry* for the light quark sector in order to determine the couplings of pseudoscalar and vector mesons to the heavy baryons.
- The short-range part of the potential is parameterized by the cut-off parameters. The results are sensitive to the choice of the cutoff. It is an important and interesting future problem to evaluate the short range part of the BB interaction.
- The couplings of the Σ_cN and Σ_c*N (Σ_cΣ_c, Σ_c*Σ_c and Σ_c*Σ_c*) channels are taken into account and we have found that the tensor couplings to the D wave Σ_c*N (⁵D₀ etc) states are very important.

Heavy quark baryons have a rich spectrum, which are not yet explored. Many "predictions", Few data.

Baryon	J^p	Ι	S^{π} Qua	ark content	Mass []	MeV]	A A	A REPORT AND A REP			
					Quark model [25, 34]	Experime [6]	nt				
Ξ _{cc}	$\frac{1}{2}^{+}$	$\frac{1}{2}$	1+	ccn	3613	3518.9	國際				
Ω_{cc}	$\frac{1}{2}^{+}$	0	1+	ccs	3712	-	STAN -				
Λ_c	1+	0	0+	udc	2295	2286.5	And				
Σ_c	$\frac{1}{2}$ +	1	1+	nnc	2469	2453.6		Single.	Doub	le. Tri	nle
Σ_c^*	3+	1	1+	nnc	2548	2518.0	13 V	Single, Donote, Imple			AN 25/27
Ξ_c	$\frac{1}{2}$ +	$\frac{1}{2}$	0+	nsc	2474	2469.3					
Ξ_c'	1+	1	1+	nsc	2578	2576.8					
Ξ*	3+	1	1+	nsc	2655	2645.9	1.17				
Ω_c	1+	Õ	1+	SSC	2681	2695.2					
Ω_c^*	$\frac{3}{2}^{+}$	0	1+	ssc	2755	2765.9	-				
	and the second										
	This work Variational	3 Faddeev	LQCD	[1] Bag Mode	1	[4] NRCQM	[5] Coulomb	[6] NRCQM	RTQM	8 Regge	QCDSR
$m_{\Omega_{bbb}^*}$	14398	14398	14371 ± 12	14300	14760 ± 180	-	14370 ± 80	14834	14569	-	13280 ± 100
mE*	11245	-	-	11200	11480 ± 120	_	11190 ± 80	11554	11287	_	10540 ± 110
mEbbc	11214	11217	-	-	-	-	11190 ± 80	11535	11280	-	10300 ± 100
mE*	8046	-	-	8030	8200 ± 90	-	7980 ± 70	8265	8025	-	7450 ± 160
mEccb	8018	8019	-	-	-	_	7980 ± 70	8245	8018	-	7410 ± 130
mo.	4799	4799	-	4790	4925 ± 90	4632	4760 ± 60	4965	4803	4819 ± 7	4670 ± 150

Mass of Triply-Heavy Baryon in LQCD

PHYSICAL REVIEW D 82, 114514 (2010)

Prediction of the Ω_{bbb} mass from lattice QCD

Stefan Meinel

Department of Physics, College of William & Mary, Williamsburg, Virginia 23187-8795, USA (Received 28 October 2010; published 29 December 2010)

The mass of the triply-heavy baryon Ω_{bbb} is calculated in lattice QCD with 2 + 1 flavors of light sea quarks. The *b* quark is implemented with improved lattice nonrelativistic QCD. Gauge field ensembles from both the RBC/UKQCD and MILC collaborations with lattice spacings in the range from 0.08 fm to 0.12 fm are used. The final result for the Ω_{bbb} mass, which includes an electrostatic correction, is $14.371 \pm 0.004_{\text{stat}} \pm 0.011_{\text{syst}} \pm 0.001_{\text{exp}}$ GeV. The hyperfine splitting between the physical J = 3/2 state and a fictitious J = 1/2 state is also calculated.

Mass of Triply-Heavy Baryon in LQCD

Mass of Triply-Heavy Baryon in LQCD

PHYSICAL REVIEW D 82, 114514 (2010)

Prediction of the Ω_{bbb} mass from lattice QCD

Stefan Meinel

Department of Physics, College of William & Mary, Williamsburg, Virginia 23187-8795, USA (Received 28 October 2010; published 29 December 2010)

The mass of the triply-heavy baryon Ω_{bbb} is calculated in lattice QCD with 2 + 1 flavors of light sea

e Ω_{bbb} mass.	
$M_{\Omega_{bbb}}$ (GeV)	$L = 24, a \approx 0.11 \text{ fm}$ $L = 32, a \approx 0.08 \text{ fm}$
14.248	
14.30	3(E + 2E)
14.76 ± 0.18	$-\frac{1}{8}(E_{\eta_b}+3E_{\Upsilon})$
13.823	-
14.348-14.398	Т
14.37 ± 0.08	
14.569	
14.834	_
14.276	
13.28 ± 0.10	
$\pm 0.004_{\text{stat}} \pm 0.011_{\text{syst}} \pm 0.00$	1 _{exp} .3 0.4 0.5
	$\frac{M_{\Omega_{bbb}} \text{ (GeV)}}{14.248}$ 14.30 14.76 ± 0.18 13.823 14.348-14.398 14.37 ± 0.08 14.569 14.834 14.276 13.28 ± 0.10 $\pm 0.004_{\text{stat}} \pm 0.011_{\text{syst}} \pm 0.00$

29

- **H** Other possibilities of heavy-quark nuclei
 - DN bound state (BE~200 MeV) will give Λ*c (1/2-). A prediction in the coupled channel calculation by Mizutani, Ramos. DNN and other D-Nuclear states are expected.
 - D^{bar} N: exotic (pentaquark) bound state is predicted in OPE by Yasui and Sudo.
 - Hidden-charm baryons and nuclei, *i.e.*, J/ψ, η_c bound nuclei: Attractive force with a (J/ψ, η_c) ~ 0.2-0.3 fm predicted in lattice QCD calculation by Kawanai, Sasaki. Such an attraction may produce a bound (J/ψ, η_c) - ⁴He nuclei.