Extended Brueckner-Hartree-Fock theory in many body system

- Importance of pion in nuclei -

Hiroshi Toki (RCNP, KEK) In collaboration with Yoko Ogawa (RCNP) Jinniu Hu (RCNP) Kaori Horii (RCNP) Takayuki Myo (Osaka Inst. of Technology) Kiyomi Ikeda (RIKEN)

Pion is important in Nuclear Physics !

- Yukawa(1934) predicted pion as a mediator of nuclear interaction to form nucleus
- Meyer-Jansen (1949) introduced shell model—beginning of Nuclear Physics
- Nambu(1960) introduced the chiral symmetry and its breaking produced mass and the pion as pseudo-scalar
 11.7:particle toki@genkenpion

Shell model (Meyer-Jensen)

- Phenomenological
- Strong spin-orbit interaction added by hand
- Magic number
- 2,8,20,28,50,82

The importance of pion is clear in deuteron

$\Psi_d = u(r)[Y_0(\hat{r}) \otimes \chi_1(\sigma_1\sigma_2)]_{1M} + w(r)[Y_2(\hat{r}) \otimes \chi_1(\sigma_1\sigma_2)]_{1M}$ Deuteron (1⁺)

S=1 and L=0 or 2

Energy	-2.24 [MeV]			
Kinetic	19.88			
(SS)	11.31			
(DD)	8.57			
Central	-4.46			
(SS)	-3.96			
(DD)	-0.50			
Tensorc	-16.64			
(SD)	-18.93			
(DD)	2.29			
LS	-1.02			
P (<i>D</i>)	5.78 [%]			
Radius	1.96 [fm]			
(SS)	2.00 [fm]			
(DD)	1.22 [fm]			

Progress of Theoretical Physics, Vol. 123, No. 1, January 2010

Theoretical Foundation of the Nuclear Force in QCD and Its Applications to Central and Tensor Forces in Quenched Lattice QCD Simulations

Sinya Aoki,¹ Tetsuo Hatsuda² and Noriyoshi Ishii²

11.7.22

toki@genkenpion

Variational calculation of few body system with NN interaction

C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci.51(2001)

Heavy nuclei (Super model)

Pion is key

Pion is important in nucleus

- 80% of attraction is due to pion
- Tensor interaction is particularly important

$$\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q} = \frac{1}{3} q^2 S_{12}(\hat{q}) + \frac{1}{3} \vec{\sigma}_1 \cdot \vec{\sigma}_2 q^2 \qquad S_{12}(\hat{q}) = \sqrt{24\pi} \Big[Y_2(\hat{q}) \big[\sigma_1 \sigma_2 \big]_2 \Big]_0$$
Pion Tensor spin-spin

Expected effects of pairing and tensor correlations in ¹¹Li

Pairing-blocking :

K.Kato,T.Yamada,K.Ikeda,PTP101('99)119, Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1.

Tensor optimized shell model (TOSM)

Myo, Toki, Ikeda, Kato, Sugimoto, PTP 117 (2006)

0p-0h + 2p-2h

 $\Phi({}^{4}\text{He}) = \Sigma_{i} \,C_{i} \,\psi_{i}(\{b_{\alpha}\}) = C_{1} \,(0s)^{4} + C_{2} \,(0s)^{2} (\overline{0p}_{1/2})^{2} + \cdots$

 $b_{0s} \neq b_{\overline{0p}}$ (size parameter)

Energy variation

$$\begin{split} H &= \sum_{i=1}^{A} t_{i} - T_{\mathsf{G}} + \sum_{i < j}^{A} v_{ij}, \qquad v_{ij} = v_{ij}^{\mathsf{C}} + v_{ij}^{\mathsf{T}} + v_{ij}^{\mathsf{LS}} + v_{ij}^{\mathsf{Clmb}}, \\ & \mathbf{G}^{\mathsf{c}} \\ \delta \frac{\langle \Phi \mid H \mid \Phi \rangle}{\langle \Phi \mid \Phi \rangle} = 0 \quad \Rightarrow \quad \frac{\partial \langle H - E \rangle}{\partial b_{\alpha}} = 0 , \quad \frac{\partial \langle H - E \rangle}{\partial C_{i}} = 0. \end{split}$$

Unitary Correlation Operator Method (UCOM) $\Psi_{\text{corr.}} = \underset{\bigwedge}{C} \cdot \Phi_{\text{uncorr.}} \leftarrow \text{SM, HF, FMD}$ short-range correlator $C^{\dagger} = C^{-1}$ (Unitary trans.) $H\Psi = E\Psi$ $C^{+}HC\Phi = E\Phi$ Bare Hamiltonian Shift operator depending on the relative distance r $C = \exp(-i\sum_{i \neq i} g_{ij}), \quad g' = \frac{1}{2} \left\{ p_r s(r) + s(r) p_r \right\} \qquad \vec{p} = \vec{p}_r + \vec{p}_{\Omega}$

 $g = g^{\dagger}$: Hermitian generator

H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

$$R'_+(r) = \frac{s(R_+(r))}{s(r)}$$

11.7.22

toki@genkenpion

 $C^{\dagger}r \ C = R_{+}(r) \qquad 12$

⁴He with UCOM

Tensor-optimized few-body model for s-shell nuclei

K. Horii,^{1, *} H. Toki,^{1, †} T. Myo,^{2, ‡} and K. Ikeda^{3, §}

 $\langle D|S_{12}|S\rangle \neq 0$

Nucleus	Energy	Kinetic	Central	Tensor	LS
deuteron	-2.23	19.95	-4.49	-16.64	-1.03
$^{3}H(TOFM)$	-7.54	46.67	-21.98	-30.47	-1.95
SVM[7]	-7.76	47.57	-22.49	-30.84	-2.00
4 He(TOFM)	-24.05	95.37	-54.58	-60.79	-4.05
TOSM[4]	-22.30	90.50	-55.71	-54.55	-2.53
SVM[1]	-25.92	102.35	-55.23	-68.32	-4.71

TOSM should be used for nuclear many body problem 2p-2h excitation is essential for treatment of pion

Extended Brueckner-Hartree-Fock theory with pionic correlation in finite nuclei

Yoko Ogawa *, Hiroshi Toki

Annals of Physics (2011)

$$\langle \mathbf{0}|S_{12}|\mathbf{0}\rangle = \mathbf{0}, \qquad S_{12} = \sqrt{\frac{24\pi}{5}} [Y_2(\hat{r}) \times [\sigma_1 \times \sigma_2]_2]^{(0)}.$$

HF state cannot handle the tensor interaction

$$\begin{split} |\Psi\rangle &= C_0 |0\rangle + \sum_{\alpha\mu} C_{\alpha\mu} |2p - 2h; \alpha, \mu\rangle \\ \delta \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} &= 0 \end{split} \qquad \begin{aligned} \langle \Psi | \Psi \rangle &= C_0^* C_0 + \sum_{\alpha\mu} C_{\alpha\mu}^* C_{\alpha\mu} = 1 \end{split}$$

Total energy

$$\begin{split} E &= \langle \Psi | \widehat{H} | \Psi \rangle = C_0^* C_0 \langle 0 | \widehat{H} | 0 \rangle + C_0^* \sum_{\beta \nu} C_{\beta \nu} \langle 0 | \widehat{H} | 2p - 2h; \beta, \nu \rangle + C_0 \sum_{\alpha \mu} C_{\alpha \mu}^* \langle 2p - 2h; \alpha, \mu | \widehat{H} | 0 \rangle \\ &+ \sum_{\alpha \mu \beta \nu} C_{\alpha \mu}^* C_{\beta \nu} \langle 2p - 2h; \alpha, \mu | \widehat{H} | 2p - 2h; \beta, \nu \rangle. \end{split}$$

$$\langle 2p-2h; \alpha, \mu | \widehat{H} | 2p-2h; \beta, \nu
angle = \langle 0 | \widehat{H} | 0
angle \delta_{\alpha\mu,\beta\nu} + \langle 2p-2h; \alpha, \mu | \widetilde{H} | 2p-2h; \beta, \nu
angle$$

$$\begin{split} E &= \langle \mathbf{0} | \widehat{H} | \mathbf{0} \rangle + C_0^* \sum_{\beta \nu} C_{\beta \nu} \langle \mathbf{0} | \widehat{H} | 2p - 2h; \beta, \nu \rangle + C_0 \sum_{\alpha \mu} C_{\alpha \mu}^* \langle 2p - 2h; \alpha, \mu | \widehat{H} | \mathbf{0} \rangle \\ &+ \sum_{\alpha \mu \beta \nu} C_{\alpha \mu}^* C_{\beta \nu} \langle 2p - 2h; \alpha, \mu | \widetilde{H} | 2p - 2h; \beta, \nu \rangle. \end{split}$$

Energy variation
$$\frac{\partial}{\partial C^*_{\alpha\mu}} \langle \Psi | \widehat{H} - E | \Psi \rangle = \mathbf{0},$$

$$C_0\langle 2p-2h; \alpha, \mu | \widehat{H} | 0 \rangle + \sum_{\beta \nu} C_{\beta \nu} \langle 2p-2h; \alpha, \mu | \widehat{H} | 2p-2h; \beta, \nu \rangle = EC_{\alpha \mu}$$

$$rac{\partial}{\partial \psi_b^*(\mathbf{x})} \Biggl\{ \langle \Psi | \widehat{H} | \Psi
angle - \sum_b arepsilon_b \langle \psi_b | \psi_b
angle \Biggr\} = \mathbf{0}$$

$$\begin{aligned} \frac{\partial}{\partial \psi_b^*(\mathbf{x})} \langle \mathbf{0} | \widehat{H} | \mathbf{0} \rangle + C_0^* \sum_{\alpha \mu} C_{\alpha \mu} \frac{\partial}{\partial \psi_b^*(\mathbf{x})} \langle \mathbf{0} p - \mathbf{0} h | \widehat{H} | 2p - 2h; \alpha, \mu \rangle \\ + \sum_{\alpha \mu \beta \nu} C_{\alpha \mu}^* C_{\beta \nu} \frac{\partial}{\partial \psi_b^*(\mathbf{x})} \langle 2p - 2h; \alpha, \mu | \widetilde{H} | 2p - 2h; \beta, \nu \rangle &= \varepsilon_b \psi_b(\mathbf{x}). \end{aligned}$$

$$T\psi_{b}(\mathbf{x}) + \sum_{d} \int d\mathbf{x}' \psi_{d}^{*}(\mathbf{x}') V(\mathbf{x}, \mathbf{x}') [\psi_{b} \otimes \psi_{d}]_{\mathscr{A}}(\mathbf{x}, \mathbf{x}') - C_{0}^{*} \sum_{\alpha \mu} C_{\alpha \mu} N \widehat{J} \widehat{T} \langle [\cdot d]_{JT} | V | [ac]_{JT} \rangle_{\mathscr{A}}(\mathbf{x})$$
$$+ \sum_{\alpha \mu \beta \nu} C_{\alpha \mu}^{*} C_{\beta \nu} E_{2p-2h}(\alpha \mu, \beta \nu : \mathbf{x}) = \varepsilon_{b} \psi_{b}(\mathbf{x}).$$
$$\frac{\partial}{\partial \mu} / 2n - 2h; \alpha, \mu | \widetilde{H} | 2n - 2h; \beta, \nu \rangle = E_{2n} \exp(\alpha \mu, \beta \nu : \mathbf{x})$$

$$\frac{\partial}{\partial \psi_b^*(\mathbf{x})} \left\langle 2p - 2h; \alpha, \mu | \widetilde{H} | 2p - 2h; \beta, \nu \right\rangle = E_{2p-2h}(\alpha \mu, \beta \nu : \mathbf{x})$$

We can solve finite nuclei by solving the above equation.

EBHF equation

11.7.22

$$\begin{split} \mathcal{C}_{\beta\nu} &= \sum_{\alpha\mu} \left[E - \langle 2p - 2h; \alpha, \mu | \widehat{H} | 2p - 2h; \beta, \nu \rangle \right]^{-1} \times \langle 2p - 2h; \alpha, \mu | \widehat{V} | 0 \rangle \mathcal{C}_{0} \\ &= \sum_{\alpha\mu} \frac{1}{E - \langle \alpha, \mu | \widehat{H} | \beta, \nu \rangle} \langle \alpha, \mu | \widehat{V} | 0 \rangle \mathcal{C}_{0}. \\ T\psi_{b}(x) + \sum_{d} \int d^{3}x' \psi_{d}^{*}(x') V(x, x') \left[\psi_{b} \psi_{d} \right]_{A} + \left| \mathcal{C}_{0} \right|^{2} \sum_{\alpha\mu,\beta\nu} \frac{\partial \langle 0 | \widehat{V} | \alpha\mu \rangle}{\partial \psi_{b}^{*}(x)} \frac{1}{E - \langle \beta\nu | \widehat{H} | \alpha\mu \rangle} \langle \beta\nu | \widehat{V} | 0 \rangle \\ &+ \left| \mathcal{C}_{0} \right|^{2} \sum_{\alpha\mu,\beta\nu} \langle 0 | \widehat{V} | \alpha\mu \rangle \frac{1}{E - \langle \alpha'\mu' | \widehat{H} | \alpha\mu \rangle} \frac{\partial \langle \alpha'\mu' | \widetilde{H} | \beta'\nu' \rangle}{\partial \psi_{b}^{*}(x)} \frac{1}{E - \langle \beta\nu | \widehat{H} | \beta'\nu' \rangle} \langle \beta\nu | \widehat{V} | 0 \rangle = \varepsilon_{b} \psi_{b}(x) \\ V_{eff} &= \left| \mathcal{C}_{0} \right|^{2} V + \left| \mathcal{C}_{0} \right|^{2} \sum_{\alpha\mu,\beta\nu} \langle 0 | \widehat{V} | \alpha, \mu \rangle \frac{1}{E - \langle \beta,\nu | \widehat{H} | \alpha,\mu \rangle} \langle \beta,\nu | \widehat{V} | 0 \rangle. \\ &- \frac{\partial}{\partial \psi_{b}^{*}(x)} \langle 0 | V_{eff} | 0 \rangle \end{split}$$

Feshbach projection method

$$\begin{split} H(P+Q)\Psi &= E(P+Q)\Psi, \\ \begin{cases} PHP\Psi + PHQ\Psi &= EP\Psi, \\ QHP\Psi + QHQ\Psi &= EQ\Psi, \end{cases} \qquad Q\Psi &= \frac{1}{E-QHQ}QHP\Psi \\ PHP\Psi + PHQ\frac{1}{E-QHQ}QHP\Psi &= EP\Psi, \end{cases} \\ PHP\Psi + PHQ\frac{1}{E-QHQ}QHP\Psi &= EP\Psi, \end{cases} \\ V_{eff} &= PVP + PVQ\frac{1}{E-QHQ}QVP, \end{cases} \\ P &= \left|0\right\rangle \langle 0\right| \qquad Q &= \sum_{\alpha} \left|2p2h:\alpha\right\rangle \langle 2p2h:\alpha\right| \\ V_{eff} &= \left|C_{0}\right|^{2}V + \left|C_{0}\right|^{2}\sum_{\alpha\beta} \langle 0|V|\alpha\rangle \frac{1}{E-\langle\beta|H|\alpha\rangle} \langle\beta|V|0\rangle \\ &= toki@genkenpion \qquad 21 \end{split}$$

11.7.22

$$\begin{split} & \begin{array}{c} \text{Comparison to BHF theory} \\ & G = V - V \frac{Q}{e} G = V - V \frac{Q}{e} V + V \frac{Q}{e} V \frac{Q}{e} V - \dots \\ & & \\ & V_{eff} = \left| C_0 \right|^2 V + \left| C_0 \right|^2 \sum_{\alpha\beta} \langle 0 | V | \alpha \rangle \frac{1}{E - \langle \beta | H | \alpha \rangle} \langle \beta | V | 0 \rangle \\ & = \left| C_0 \right|^2 \left[V - \sum_{\alpha} \langle 0 | V | \alpha \rangle \frac{1}{E_{\alpha}} \langle \alpha | V | 0 \rangle + \sum_{\alpha\beta} \langle 0 | V | \alpha \rangle \frac{1}{E_{\alpha}} \langle \alpha | V | \beta \rangle \frac{1}{E_{\beta}} \langle \beta | V | 0 \rangle + \dots \right] \\ & \quad E - \langle \beta | H | \alpha \rangle \approx - E_{\alpha} \delta_{\alpha\beta} - \langle \beta | V | \alpha \rangle \end{split}$$

•There appears $|C_0|^2$. • $|C_0|^2$ is not normalized to 1.

$$\left|C_{0}\right|^{2} + \sum_{\alpha} \left|C_{\alpha}\right|^{2} = 1$$

Relativistic Chiral Mean Field Model for Finite Nuclei

Yoko OGAWA¹ and Hiroshi TOKI² Nucl. Phys (2011)

 $\mathcal{L} = \mathcal{L}_{\sigma,\omega} + \mathcal{L}_{\pi},$

Direct terms only

$$\mathcal{L}_{\sigma,\omega} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - M - g_{\sigma}\sigma - g_{\omega}\gamma_{\mu}\omega^{\mu})\psi + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \lambda f_{\pi}\sigma^{3} - \frac{\lambda}{4}\sigma^{4} - \frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \tilde{g_{\omega}}^{2}f_{\pi}\sigma\omega_{\mu}\omega^{\mu} + \frac{1}{2}\tilde{g_{\omega}}^{2}\sigma^{2}\omega_{\mu}\omega^{\mu},$$

$$\mathcal{L}_{\pi} = -\frac{g_A}{2f_{\pi}}\bar{\psi}\gamma_5\gamma_{\mu}\partial^{\mu}\pi^a\tau^a\psi + \frac{1}{2}\partial_{\mu}\pi^a\partial^{\mu}\pi^a - \frac{1}{2}m_{\pi}^2\pi^{a2}$$

toki@genkenpion

Relativistic chiral mean field model

Individual contribution **Pion contribution** 0.0 ¹⁶0 Pion energy (2p-2h) per particle -2 $-^{12}C$ m_= 700 MeV $g_{m} = 8.537 (^{12}C), g_{m} = 8.594 (^{16}O)$ -0.5Energy (MeV) ()Energy (MeV) Pion energy (2p-2h) per particle -1.0 from each pionic quantum number J^{π} $m_{a}=700 \text{ MeV}$ $g_{co} = 8.537 (^{12}C), g_{co} = 8.594 (^{16}O)$ -1.5 -10 ¹⁶O -12 2-3+ -2.00-10 11^{+} 0-1+ 3+ 9+ 10- 11^{+} 2-Pionic quantum number J^{T} Pionic quantum number J^{π}

P_{1/2}

P_{3/2}

S_{1/2}

Pion energy

The difference between ^{12}C and ^{16}O is 1.5 MeV/N.

The difference comes from low pion spin states (J<3). This is the Pauli blocking effect.

Pion tensor provides large attraction for ¹²C

Renaissance in Nuclear Physics by pion

- We have a EBHF theory with pion
- Unification of hadron and nuclear physics
- Pion is the main player—Pion renaissance
- High momentum components are produced by pion (Tensor interaction) — Nuclear structure renaissance
- Nuclear Physics is truly interesting!!

相対論的多体系としての原子核 – 相対論的平均場理論とカイラル対称性 –

土岐 博、保坂 淳

平成 21 年 12 月 28 日

Monden

Relativistic Brueckner-Hartree-Fock theory

Brockmann-Machleidt (1990)

Important experimental data

Prediction

Toki Yamazaki, PL(1988)

Found by (d,³He) @ GSI

Itahashi, Hayano, Yamazaki.. Z. Phys.(1996), PRL(2004)

Physics : isovector s-wave

$$\frac{b_1}{b_1(\rho)} = 1 - 0.37 \frac{\rho}{\rho_0}$$

$$f_{\pi}^{2}m_{\pi}^{2} = -2m_{q}\left\langle \overline{\psi}\psi\right\rangle$$

 $\frac{\rho}{r} = 1 - 0.37 \frac{\rho}{r}$ <u>/1/1</u>/1/ ho_0

toki@genkenpion

29

Suzuki, Hayano, Yamazaki.. PRL(2004)

Optical model analysis for the deeply bound state.

Nuclear structure caused by pion

- 2p-2h excitation is 20%
- High momentum components
- Low momentum components (Shell model) are reduced

by 20%

toki@genkenpion

RCNP experiment (high resolution)

Relative Cross Section

^{c)} G.R. Smith *et al.*, PRC30, 593(1984)

The property of tensor interaction

