ハドロン反応によるペンタクオーク 探索実験にむけて

contents

- Hadron Hall & Hadron Physics at J-PARC
- Search for Θ^+ Pentaquark in Hadronic Reaction
 - Physics Motivation
 - Past experiments at KEK-PS
 - □ J-PARC E19 experiment : π -p→K-X
 - Future Plan
 - LOI: formation process $KN \rightarrow \Theta^+$: settle the situation
 - LOI: Θ^+ hypernuclei
 - other pentaquarks, tetraquarks
 - Current Status of K1.8 beamline

Beamline Tuning @K1.8BR 2009/2

K1.8BRのrun#27のビーム利用(11/14、11/15、11/19)

2009/11/19 08.02

✓ 11/14及び15は+-0.75
 GeV/c、ESS offで
 "e"/"K"/"π"/"p"
 のオンライントリガーを
 構築、Kトリガーにおいて
 はESS offのビームのK/π
 比を100倍以上改善する
 ことが出来た。
 ✓ 11/19にはCherenov検
 出器の調整用の大統計
 データを4時間取得した。

7

7×10¹⁰ pppのビーム強度 においてはK+/K-の個数は それぞれショット当りで全 スリット開状態で30/7個で あることが確定したため調 整を進行するためには、さ らなるビーム強度が必須。

ハドロン実験施設(2010年度)

Location of E16 : High-momentum beam line

Coexistence with K1.1 and K1.1BR

- Removable experimental apparatus
- •No Q magnet in K1.1BR Area \rightarrow 2~3 weeks to switch

It will take 2~3 months to switch K1.1 and High-p line.

	J-PARC PAC Approval summary after the 6th meeting							
	(Co-)	Affiliation	Title of the experiment	Approval status	Slow line priority		Beamline	
	Spokespersons			(PAC recommendation)	Day1?	Day1 Priority		
E15	M.Iwasaki, T.Nagae	RIKEN, KEK	A Search for deeply-bound kaonic nuclear states by in-flight 3He(K-, n) reaction	Stage 2	Day1		K1.8BR	
E17	R.Hayano, H.Outa	U. Tokyo, RIKEN	Precision spectroscopy of Kaonic 3He 3d->2p X-rays	Stage 2	Day1		K1.8BR	
E03	K.Tanida	Kyoto U	Measurement of X rays from $\Xi-$ Atom	Stage 2			K1.8	
E05	T.Nagae	КЕК	Spectroscopic Study of E-Hypernucleus, 12 EBe, via the 12C(K-, K+) Reaction	Stage 2	Day1	1	K1.8	
E07	K.Imai, K.Nakazawa, H.Tamura	Kyoto U., Gifu U., Tohoku U.	Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method	Stage 2			К1.8	
E08	A.Krutenkova	ITEP	Pion double charge exchange on oxygen at J-PARC	Stage 1			K1.8	
E10	A. Sakaguchi, T. Fukuda	Osaka U	Production of Neutron-Rich Lambda-Hypernuclei with the Double Charge-Exchange Reaction (Revised from Initial P10)	Stage 2			K1.8	
E13	T.Tamura	Tohoku U.	Gamma-ray spectroscopy of light hypernuclei	Stage 2	Day1	2	K1.8	
E18	H.Bhang, H.Outa, H.Park	SNU, 'RIKEN, KRISS	Coincidence Measurement of the Weak Decay of 12 AC and the three-body weak interaction process	Stage 1			K1.8	
E19	M.Naruki	RIKEN	High-resolution Search for Ө+ Pentaquark in п -р -> K-X Reactions	Stage 2	Day1		K1.8	
E22	S. Ajimura, A.Sakaguchi	Osaka U	Exclusive Study on the Lambda-N Weak Interaction in A=4 Lambda-Hypernuclei (Revised from Initial P10)	Stage 1			K1.8	
E27	T. Nagae	Kyoto U.	Search for a nuclear Kbar bound state K-pp in the $d(p+,K+)$ reaction	Stage 1			K1.8	
E14	T.Yamanaka	Osaka University	Proposal for KL -> $\pi 0 \vee \nu$ -bar Experiment at J-PARC	Stage 2			KL	
E06	J.Imazato	KEK	Measurement of T-violating Transverse Muon Polarization in K+ -> π 0 μ + v Decays	Stage 1			K1.1BR	
E16	S.Yokkaichi	RIKEN	Electron pair spectrometer at the J-PARC 50-GeV PS to explore the chiral symmetry in QCD	Stage 1			High pt	

Beam Requests from Stage-2 Experiments

30 GeV, 9µA = 270 kW, 2 x 10¹⁴ protons/3.6s

K1.8 (SKS)

		Beam Power [kW]	Period [days]	Protons on Target
E03	X rays from E ⁻ Atom	270	33	1.6 x 10 ²⁰
E05	Ξ-Hypernucleus	270	28	1.4 x 10 ²⁰
E07	Double Strangeness with Emulsion	56	25	2.5 x 10 ¹⁹
E10	Λ-Hypernuclei	3.2	42	2.4 x 10¹⁸
E13	Gamma-ray spectroscopy of light hypernuclei	270	42	2.0 x 10 ²⁰
E19	<i>O</i> ⁺ Pentaquark	3.2	14	8.1 x 10 ¹⁷

Beam Requests from Stage-2 Experiments

30 GeV, 9µA = 270 kW, 2 x 10¹⁴ protons/3.6s

K1.8BR							
		Beam Power [kW]	Period [days]	Protons on Target			
E17	Kaonic 3He	270	3.5	1.7 x 10 ¹⁹			
E15	deeply bound kaonic nucleus	270	28	1.4 x 10 ²⁰			
KL							
		Beam Power [kW]	Period [days]	Protons on Target			
E14	Kaon Rare Decay	270	350	1.7 x 10 ²¹			

Spectrometer @ K1.8

- missing mass spectroscopy
- PID & momentum measurement for beam and scattered particles

 SKS: superconducting magnet weight: 300 ton used at KEK-PS K6 beamline

MWPC1

Gas Cerenkov

E19 experiment

21

What is Pentaquark?

 Irreducible 5 quark state contain an anti-quark different in flavor than the 4 quarks

The Θ^+ : uudds Baryon number = 1/3 + 1/3 + 1/3 + 1/3 - 1/3 = 1Strangeness = 0 + 0 + 0 + 0 + 1 = +1**LEPS** 15 LEPS at Spring-8 ('03) Events/(0.02 GeV/c²) $-\gamma n \rightarrow K^- \Theta^+ \rightarrow K^- K^+ n$ 10 - M=1540±10 MeV - Γ<25 MeV 5 background 0 1.6 1.65 1.7 1.75 1.8 1.45 1.5 1.55

MM^c_{⊓k}□ (GeV/c²)

 Θ^+

C

Positive Results

Negative Results

Negative Results

Exp.	√s(E _{beam})	Reaction	Upper Limit
BES	3.7GeV	$e^+e^- \rightarrow J/\psi \rightarrow \Theta\Theta$	< 1.1 × 10 ⁻⁵ B.R.
BaBar	10.58GeV	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow pK^0X$	< 1.0 × 10 ⁻⁴ B.R.
Belle	11GeV	e⁺e⁻ → BB → ppK ⁰ X	< 2.3 × 10 ⁻⁷ B.R.
LEP	198GeV	$e^+e^- \rightarrow Z \rightarrow pK^0X$	< 6.2 × 10 ⁻⁴ B.R.
HERA-B	41.6GeV	$pA \rightarrow K^{0}pX$	< 0.02 × Λ*
SPHINX	11.5GeV	$pC \rightarrow K^0 \Theta^+ X$	< 0.1 × Λ*
HyperCP	(800GeV)	$pCu \rightarrow K^{0}pX$	< 0.3% К ^о р
CDF	1.96TeV	$pp \rightarrow K^{0}pX$	< 0.03 × Λ*
FOCUS	~300GeV	$\gamma BeO \rightarrow K^{O}pX$	$< 0.02 \times \Sigma^{\star}$
Belle	(~0.6GeV)	$K^+A \rightarrow pK_s^0$	Γ < 0.64 MeV
PHENIX	200GeV	Au + Au → K⁻nX	-
BaBar	9.4GeV	$eBe \rightarrow K^{0}pX$	-
CLAS-d	0.8-3.6GeV	$\gamma d \rightarrow pK^{-}K^{+}(n)$	3nb for γn
CLAS-p	<3.8GeV	$\gamma p \rightarrow K^{\circ}KN$	0.8nb

Positive Results

Eve	Energy ([a)	Deastion	11000	\A/idth		p
Exp.	Energy(VS)	Reaction	Mass	wiain	σ	
LEPS	≤2.4GeV	$\gamma C \rightarrow K^{-}K^{+}(n)$	1540 ± 10	< 25	4.6	*
DIANA	≤750MeV/c	K⁺Xe →K⁰pX	1539 ± 2	< 9	4.4	*Belle
CLAS-d	1.58-3.8GeV	$\gamma d \rightarrow pK^{-}K^{+}(n)$	1542 ± 5	< 21	5.2	
SAPHIR	≤2.8GeV	$\gamma p \rightarrow K^{0}K^{+}(n)$	$1540\pm~6$	< 25	4.8	
ITEP	40GeV	$v A \rightarrow K^{0} p X$	$1533\pm\ 5$	< 20	6.7	
CLAS-p	3-5.47GeV	γp → π⁺K⁻ K⁺(n)	1555 ± 10	< 26	7.8	?
HERMES	27.6GeV	e⁺d → K⁰pX	$1528\pm~3$	13 ± 9	4.2	?
ZEUS	(300,318GeV)	e⁺p → e′K⁰pX	1522 ± 3	8 ± 4	4~5	
COSY	2.95GeV/c	$pp \rightarrow K^0 p\Sigma^+$	$1530\pm\ 5$	< 18	4-6	*
SVD	70GeV/c	$pA \rightarrow K^{0}pX$	1526 ± 5	< 24	5.6	
BaBar	(10.58GeV)	eBe→K⁰pX	nogativo	roculte d	hallon	aina
CLAS-d	0.8-3.6GeV	$\gamma d \rightarrow pK^{-}K^{+}(n)$	the above	e positiv	e resul	ts.
CLAS-p	<3.8GeV	$\gamma p \rightarrow K^{\circ} K N$				

これまでに何が分かったか?

narrow width ~ 1 MeV
production mechanism

nosignal
CLAS γp → K⁻KN
KEK-PS E559
coupling to K*N is small

still survive

LEPS γd→K⁺K⁻X
vs. CLAS γd → produced at forward angles. S=3/2?
CLAS γp → π⁺K⁻K⁺n
DIANA KXe→pKs⁰

Chiral soliton model: Diakonov et al.

Quark description: Jaffe, Wilczek

"Best" Positive Evidence

 $E\gamma \sim 3.2 - 5.47 \text{ GeV}$

• $\gamma p \rightarrow \pi^+ K^- K^+(n)$

- CLAS: V. Kubarovsky *et al.* PRL <u>92</u> 032001 (2004)
- Combined analysis of all CLAS data on protons for $E\gamma < 5.5$ GeV
- Cuts: forward π⁺, backward K⁺
- indications of production from heavy N*(2420)

Θ^+ Search in hadronic reactions

- ✓ show the narrow pentaquark really exist (or not).
 with high statistics.
- determine the width the width appears to be very narrow. ~ 1MeV
 — the mass resolution is the key: SKS
 ✓ spin and parity

meson induced reactions @ J-PARC

the possible production mechanism will be investigated in the following reactions.

KEK–PS E522 experiment

- Θ^+ search via $\pi^- p \rightarrow K^- X$ reaction
 - K2 beamline + KURAMA
- beam momentum : 1.87, 1.92 GeV/c
- target : Polyethylene
- intensity : 3.3 X 10⁵ π^- /spill
- net beam time : 32 hours for each momentum $\rightarrow \sim 7 \times 10^9 \pi^-$
- Mass resolution : 13.4MeV(FWHM)

```
a bump was observed
at M =1530.8MeV/c2
at p_{\pi}=1.92 GeV/c
but : S/N = 2.5\sigma
upper limit : d\sigma/d\Omega < 2.9µb/sr
```


KEK-PS E559 : $K^+p^{\rightarrow}\pi^+\Theta^+$

- Θ^+ search via K⁺p $\rightarrow \pi^+$ X reaction
 - K6 beam line + SKS spectrometer
- Excellent missing mass resolution
 - 2.4MeV (FWHM) expected
 - Checked by $\pi^+ p \rightarrow K^+ \Sigma^+$
- Decay event suppression
 - Rejection of 3 body decay of K⁺ is crucial
 - Large acceptance chamber
 - Range Counter

3

Missing Mass spectrum (K⁺p $\rightarrow \pi^+X$)

No significant peak is observed. upper limit of differential cross section < 3.5 μ b/sr at 90% C.L.

Impact on Θ^+ production mechanism

CLAS DATA : $\gamma p \rightarrow K^0 \Theta^+$

The result puts a very stringent limit on a possible production mechanism of the Θ^+ ; it implies a very small coupling to K^{*}.

g_{NK*⊕+} ~ 0

J-PARC E19 experiment

- Day-I experiment : Sep. 2009 ~
- •K1.8 beamline + SKS spectrometer
- natural expansion of E522 ($\pi p \rightarrow KX@KEK-PS$)
- •~5 times better resolution : ~ 2.5MeV FWHM with SKS -10 times better S/N
- +100 times larger yield : 1.2 X 104 Θ^+ with 20 shifts
- momentum dependence of cross section $p_{\pi} = (1.87, 1.92, 1.97 \text{GeV/c})$

- Goal - confirm Θ^+ existence with high statistics

Collaboration

KEK M. Naruki, S. Ishimoto, T. Maruta, N. Saito, Y. Sato, S. Sawada and M. Sekimoto

S. Ajimura

M. Niiyama

Kyoto Univ.

S. Dairaku, K. Imai, Y. Nakatsugawa, K. Tanida, H. Fujioka

Osaka Univ.

RIKEN

Tohoku Univ.

H. Fujimura, K. Miwa, H. Tamura D. Nakajima and T.N. Takahashi Univ. of Tokyo

Experimental Method

- K1.8 beam line + SKS
- 2GeV/c π^- + p \rightarrow K⁻ + Θ^+ target : liquid H₂, reuse E559's
- K^{-} : scattered angle $\leq 40^{\circ}$ momentum < 0.9~GeV/c
- SKS : momentum coverage : 0.7-0.95GeV/c

angle coverage $\leq 20^{\circ}$ $p_{scattered}$ up to ~ 1.1 GeV/c $dp/p \sim 0.2\% @ 1GeV/c$ (~5 times better than KURAMA) ideal for Θ^+ detection

Missing Mass Resolution

Expected Missing mass SPECTRUM

Expected Yield & Sensitivity

yield

- beam pions :160 hours beam time \rightarrow 4.8 X 10¹¹ π for each p_{π}
- SKS acceptance : 0.1 sr
- analysis efficiency : 50%
- K decay : 50% ← TOF 4.7m
- 1.9µb/sr @ p_{π} =1.92GeV/c ← E522 → 1.2 X 10⁴ events

background

- 0.8 $\mu b/sr/MeV @ 1.530MeV$ for proton target \leftarrow E522
- momentum flat

→ 5.0 X 10³ counts/MeV

statistics 62σ Γ < 2 MeV

sensitivity 75nb/sr Γ < 2 MeV

cf. 340nb/sr Γ =1MeV (Born approx.) $\rightarrow \Gamma$ <0.22MeV

P09–LoI: Letter of Intent for Study of Exotic Hadrons with S=+1and Rare Decay $K^+ \rightarrow \pi^+ \nu \nu$ with Low– momentum Kaon Beam at J–PARC

T. Nakano et al.

Search for Θ^+ in formation reaction

- K⁺n→Θ⁺→K_S⁰p→π⁺π⁻p
 P(K⁺)=417 (442) MeV/c
 for M=1.53 (1.54) GeV/c²
 - → K0.8 beamline w/ degrader
- Target
 - LD₂ target
 - mass resolution ~ 3MeV
 - yield : 15/mb/spill (K:3X10⁴/spill)
 - active target
 - mass resolution ~6MeV
 - yield : 200/mb/spill
- π⁺, π⁻, & proton detection with 4π spectrometer

Search for Θ^+ in formation reaction

- determine width from cross section
 - $\sigma(E) = (\pi/4k^2) \Gamma^2/\{(E-m)^2 + \Gamma^2/4\}$
 - $\sigma_{tot} = 26.4 \text{ x } \Gamma \text{ mb/MeV}$
- spin measurement
 - decay angular distribution : 1 or $1+3\cos^2\theta$?

will be answer the question; Θ^+ exists or not how far we can restrict the width spin $\frac{1}{2}$ or 3/2

In FUTURE...

- other pentaquarks: cascade $\Xi_5^{--}(1862)$, charmed $\Theta_c^0(3100)$
 - $K^-n \rightarrow \Xi^{--}K^+$, $\underline{p}_{th} = 2.4 \text{GeV}$
 - □ $pp \rightarrow pp \Theta_c^0 X, p_{th} = 12.3 GeV$
- tetraquark: \mathcal{Q}^+ (udss) , Θ^+ "family"
 - Y. KANADA–En'yo et. al. : $J^p=1^+$, M=1.4GeV, $\Gamma=20\sim50$ MeV, $\mathcal{Q}^+\rightarrow K^+K^+\pi^-$
 - Burns et al. : $J^p = 1^-$, M = 1.6 GeV, $\Gamma < 100 MeV$
 - Karliner & Lipkin : J^p=0⁺
 - $K^+p \rightarrow K^+p \mathcal{Q}^+ X p_{th} = 3.7 \text{GeV}$
 - $K^+p \rightarrow \Lambda \mathcal{Q}^+ X p_{th} = 2.8 \text{GeV}$
 - $K^+p \rightarrow \Sigma^+ \mathscr{Q}^+ p_{th} = 3 \text{GeV}$

Beam dump and shields are for 10¹⁰ protons/s

Beam line height : 2.0 m or 2.5 m

Production Target at SM1

- Secondary Beams:
 - Use a thin (2% = 15kW loss) target at SM1
 - Collect them at forward angles
 - Transport them for ~120m

Schematic Layout around SM1

Expected Secondary Beam Intensity

	p (GeV/c)	Yield at SM1	Yield at 120m
p+	5	3.4E7	2.2E7
p+	10	1.0E7	8.1E6
p-	5	2.5E7	1.6E7
p-	10	6.1E6	4.9E6
K+	5	3.1E6	1.3E5
K+	10	1.4E6	2.8E5
K-	5	1.5E6	6.0E4
K-	10	3.3E5	6.8E4
p bar	5	2.7E5	2.7E5
p bar	10	5.5E4	5.5E4

30 GeV proton 2% target beam intensity : 10¹⁴ protons **Production Angle :** 4 degree $(\Delta p/p)\Delta \Omega$: 0.2 msr%

Sanford-Wang formula

strategy

- beamline tuning
 - optics for K (p=1.8GeV/c)
 - optics for π (p=2GeV/c, 1.05GeV/c)
- spectrometer performance
 - ${}^{12}C(\pi+,K+){}^{12}{}_{\Lambda}C@1.05GeV/c$
- E19
 - πp->KX@1.87,1.92,1.97GeV/c

K1.8 Beamlines

P_{max} = 2.0 GeV/c Double stages of E.S. Separators High-resolution beam spectrometer

Suitable for S=–2 Spectroscopy

	750kW	270kW		
Primary proton beam	50 GeV-15μA	30 GeV-9µA		
Length (m)	45.8	353		
Acceptance (msr.%)	1.	1.4		
$K^{-}(\pi)$ intensity (ppp) @1.8 GeV/c	6.6E+06	1.4E+06		
@1.5 GeV/c	2.7E+06	0.54E+06		
@1.1 GeV/c	0.38E+06	0.08E+06		
Electrostatic separators 750kV/10cm		m, 6m×2		
Single rate @ MS2 @ 1.8 GeV/c	>33E+06	>8E+06		
K⁻/(π⁻+μ⁻) @ FF @ 1.8 GeV/c	4	3.5		
X/Y(rms) size @ FF (mm)	19.8/3.2			

Electro-static Separator (new)

Beam Particles @+1.8GeV/c (unsep.) by BH1xBH2xGC_bar Triggers Nov.18

w/o BAC(p) & BAC(π) (ADC) cuts

w/ BAC(p) & BAC(π) (ADC) cuts

Pion suppression factor ~1/50 by BAC No multiplicity selection No pulse height correction CM Scan

ES1=+-200kV, ES2=0

ES1=0kV, ES2=+-200kV Nov.25

pi:305A (CM1) p: 340A (CM1)

pi: 290A p: 330A

CM3=306A for K

u ale u 1

0 750 800 850 900

CM Scan

Slit Condition: IFH \pm 100mm IFV -1mm/+3mm Mom +174.9/-179.8 MS1 \pm 2.35mm MS2 \pm 2.5mm

CM1=307A CM2=287A CM3=300A CM4=300A **Dec.15**

Spill Structure

水色:RQ電流モニタ値

figures from A. Kiyomichi

Micro-Structure Monitor

S1, S2は、BH1の 隣り合わない Segmentから選ぶ

BH1#3, #5, #7, #9

BH1 最上流の検出器

Logic signal (NIM) after Discriminator and Mean-timer

Shot#21025

Scalerの数え落とし?

80 MHz Visual Scalerで測定

RQ Algorithm#3

MR陽子数は~4x10^11で同じはずなのにScaler Count数は大きく違う。 Main Gain 20 以下では特にAverage Ratesの減少が顕著

22:30ごろ(Algo#3のどれか)の信号

2us

40us

BH1#5信号間隔のスペクトル

5usの構造

BH1のHit Patternからは、 Rate(#3) ~Rate(#9) = 0.5xRate(#3)~0.5xRate(#5) と推定される。 赤:23:10ごろ 黒:Algorithm#3

数え落としの原因!?

- Coincidence OutのSignal幅 100nsであった。
 10nsに変更する
- Singleの幅、BH1からのそのまま 30ns
 これ以上狭くするのは、Double Pulseの問題で難しい
- Coincidence Inputの幅 40ns(Coin. W 78ns)
 - □ 今後必要なら狭くするが、当面様子を見る
- Scalerでの数え落としというより、それ以前の回路系でのPileupが主原因。
- EQ,RQ ONでは、粒子数カウントと粒子比率がコンシステント(KEK-PS K6での経験値と)となった。@4x10^11ppp w/pt target
 - w/o EQ,RQ BH1:0.8MHz, BH2:0.6M, pi:0.38M e:0.054M
 - w/ EQ,RQ BH1:1.3MHz, BH2:0.8M, pi:0.63M e:0.061M (preliminary)

Summary

- J-PARC E19 searches for Θ^+ in $\pi^- p \rightarrow K^- \Theta^+$ raction
 - K1.8 beamline + SKS is ideal for Θ^+
 - significance ~60σ, sensitivity ~75nb/sr
 - with mass resolution of 2.5MeV(FWHM)
- Current Status
 - just starting the beamline tuning
 - the problem is the microstructure

