The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

Svirikhin A.I.

Joint Institute for Nuclear Research, Dubna, Russia

Manipal University, Madhav Nagar, India

Laboratory for Accelerator Based Sciences Laboratory for Accelerator-Based Sciences, South Africa

Institute for Nuclear Research and Nuclear Energy, Bulgaria

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

Presently the available information on the spontaneous fission of heavy elements mainly concerns partial half lives, TKE and mass distributions of fission fragments from spontaneous fission.

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

Presently the available information on the spontaneous fission of heavy elements mainly concerns partial half lives, TKE and mass distributions of fission fragments from spontaneous fission.

In the past a multiplicity distribution of prompt neutrons emitted in spontaneous fission was measured for elements not heavier than Fm.

Experimental setup

- Determination of the SF-branching ratio
- Measuring of partial half-lives
- Estimating kinetic energies of spontaneous fission fragments
- Measuring of the average number of neutrons emitted in SF
- Determination of neutron multiplicity distributions

							· · · ·									267	268	269	270	271	272	273
_																Ds						
															265	266	267	268		270	271	272
											152				Mt	Mt	Mt	Mt		Mt	Mt	Mt
											102			263	264	265	266	267		269	270	271
_										1 0				Hs	Hs	Hs	Hs	Hs		Hs	Hs	Hs
												260	261	262	263	264	265	266	267			
												Bh										
											258	259	260	261	262	263	264	265	266		268	
											Sg		Sg									
									255	256	257	258	259	260	261	262	263	264	265	266	267	268
									DЪ	DЪ	Db	DЪ	DЪ	Db	DЪ	DЪ	Db	Db	DЪ	Db	DЪ	DЪ
								253	254	255	256	257	258	259	260	261	262	263	264	265	266	267
								Rf	Rf	Rf	Rf	Rf	R£	Rf	Rf	R£	Rf	Rf	R£	R£	R£	R£
							251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266
							Lr	Lr	Lr	Lr	Lr	Lr	Lr	Lr	Lr	Lr	Lr	Lr	Lr	Lr	Lr	Lr
					248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	
					No	No	No	No	No	No	No	No	No	No	No	No	Мо	No	No	No	No	
			245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262		
			Md	Md	Md	Md	Md	Md	Md	Md	Md	Md	Md	Md	Md	Md	Md	Md	Md	Md		
	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260			
	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm	Fm		162							
											L										162	

⁴⁰ Ar(²⁰⁸ Pb,2n) ²⁴⁶ Fm	⁴⁸ Ca (²⁰⁶ Pb,2n) ²⁵² No	⁴⁰ Ar (²⁰⁶ Pb,2n) ²⁴⁴ Fm			
Target: ²⁰⁸ Pb (97.2%), 280µg/sm ² ⁴⁰ Ar-beam: E _{1/2} = 186 ± 2 MeV 0.5 pµA (3x10 ¹² pps)	Target: ²⁰⁶ Pb (97%), 350μg/sm ² ⁴⁸ Ca-beam: E _{1/2} = 217 ± 2 MeV 0.5 pμA (3x10 ¹² pps)	Target: ²⁰⁶ Pb (97%), 350μg/sm ² ⁴⁸ Ca-beam: E _{1/2} = 186 ± 2 MeV 0.5 pμA (3x10 ¹² pps)			
σ ≈ <mark>6 nb</mark>	σ ≈ 200 nb	σ ≈ <mark>3 nb</mark>			
108 SF events	2000 SF events	212 SF events			
b _{aa} = (5+3) % (lit : 8 %)	Calibration TKE -198.7 MeV	b = 100%			
$T_{1/2} = (1.3\pm0.2)s$ (lit.: 1.1с и 1.2c)	Bemis C.E. et.al., Phys.Rev. C15. 1977	$T_{1/2} = 3.47 \pm 0.26 \text{ ms} (\text{lit. } 3.12 \pm 0.08)$ TKE =195 ± 14 MeV			
20 0 0 1 2 3 4 5 6 7 8 Neutron numbers	400 - 200 - 100 - 0 1 2 3 4 5 6 7 8 Neutron numbers	60 40 20 0 1 2 0 1 2 3 4 5 6 7 8 Neutron numbers			

v = 3,6±0,5

v = 4,06 ± 0,12 (v = 4,15 ± 0,30 Yeremin A.V. et. al., Nucl. Instr. Meth. A539. 2005)

 $v = 3,3 \pm 0,3$

Isotope	Calculated ^a average number of neutrons,	Measured average number of neutrons,	Calculated ^a average TKE (MeV)	Measured average pre-neutron TKE (MeV)
²⁵² No	4.1	4.06±0.12 ^{this work}	201	202.4±1.2
²⁴⁴ Fm	3.5	3.3±0.3 ^{this work}	196	198±15 ^{this work}
²⁴⁶ Fm	3.6	3.6±0.5 ^{this work}	196	199±4
²⁴⁸ Cm	3.1	3.13±0.01	183	182
²⁵² Cf	3.6	3.77±0.01	186	184.1±1.3

In the present work we used an improved scission-point model (*see A.V. Andreev, Eur. Phys. J.* **A 30**, (2006)) which is powerful in description of various experimental data on binary and ternary fission of heavy nuclei: mass and charge distributions of fission fragments, their kinetic energies, prompt fission neutron multiplicities, etc.

Experiments Time of 13 Flight 12 detector 11 10 VASSILISSA Position-9 Distance in Meters sensitive detector array Magnetic Deflection -100 kV +100 kV Quadrupole 4 magnetic +100 kV focusing II 2 -100 kV -100 kV Beam Electrostatic Stop ~0 deflection +100 kV Beam Quadrupole magnetic Target Wheel focusing I

✤ 48×48 strips; ✤ the thickness is 300 µm; the sensitive area is 58 mm²; the pos. resolution is 1.2 mm²

Spectrum of a particles, obtained from an isolated strip from the face side of the focal detector. Reaction ⁴⁸Ca + ¹⁷⁴Yb \rightarrow ²²²Th*. Energy resolution approx. 20 keV for each strip

8000 8500

²¹⁶Th

(7920)

²¹⁷Th

9000

9500

10000

(9250)

New results

⁵⁰ Ti(²⁰⁸ Pb,2n) ²⁵⁶ Rf	⁴⁸ Ca(²⁰⁸ Pb,2n) ²⁵⁴ No	²⁰⁴ Pb(⁴⁸ Ca, 2n) ²⁵⁰ No
Target: ²⁰⁸ Pb (97.2%) (²⁰⁶ Pb, ²⁰⁷ Pb ≈ 2.5%) 300µr/cm ² ⁵⁰ Ti beam: E _{1/2} = 186 ± 2 M∋B 0.5 pµA (3x10 ¹² pps) σ ≈ 10 nb	Target: ²⁰⁸ Pb (97.2%) (²⁰⁶ Pb, ²⁰⁷ Pb ≈ 2.5%) 300µr/cm ² ⁴⁸ Ca-beam: E _{1/2} = 217 ± 2 MeV 0.2 pµA (1.2x10 ¹² pps) σ ≈ 1500 nb	Target: ²⁰⁴ Pb 350μг/см ² ⁴⁸ Ca-beam: 0.5 pμA (1.2x10 ¹² pps) σ ≈ 13 nb
1700 SF b _{SF} ≈ 100 % T _{1/2} = 6 ms	b _{SF} = <mark>0.17 %</mark> T _{1/2} = <mark>51 s</mark>	b _{SF} ≈ 100 % T _{1/2} = 4.2 μs

In the process

Summary

Future plans

Future plans

It is planned to continue studying the spontaneous fission of short-lived neutron-deficient isotopes produced in the reactions with heavy ions on the <u>modernized</u> VASSILISSA separator.

Thank you for your attention !!!

Comparison of neutron multiplicity distribution of ²⁴⁶Fm and ²⁴⁸Cm

The normalized multiplicity distribution of detected neutrons for ²⁴⁶Fm and ²⁴⁸Cm is shown

The determined by statistical regularization method multiplicity distributions of emitted neutrons for ²⁴⁶Fm and ²⁴⁸Cm is presented