Status of the development of the setup for the fission barrier determination via the (p,2p) reaction in inverse kinematics

Masaki Sasano

D. Mücher¹ M. Sasano², A. Andreyev³, T. Aumann⁴, H. Baba², M. Dozono⁵, N. Fukuda², R. Gernhäuser¹, W.F. Henning, N. Inabe², D. Kameda², H. Kentaro³, N. Kobayashi², T. Kobayashi⁸, Y. Kondo⁹, T. Kubo², Y. Kubota^{2,5}, T. Le Bleis¹, Y. Matsuda¹⁰, S. Mitsuoka⁴ T. Motobayashi², T. Nakamura⁹, I. Nishinaka³, K. Nishio³, R. Orlandi³, H. Otsu², V. Panin², S. Paschalis³, S. Reichert¹², M. Sako² H. Sato², Y. Shimizu², H. Suzuki², H. Takeda², T. Uesaka², K. Yoneda², J. Zenihiro²

1: TU Munich, 2: RIKEN Nishina Center, 3: ASRC JAEA, 4: TU Darmstadt, 5: Center for Nuclear Studies, University of Tokyo, 6: ANL, 8: Tohoku University, 9: Tokyo Institute of Technology, 10: Kyoto University

 Systematic studies
 → Barrier shape with change of isospin Competition between fission and other processes (larger Z → larger fissility, lower neutron emission)

An example: ¹⁸⁰Hg

Beta-delayed fission from ¹⁸⁰Tl (A. Alexeyev et al., PRL105,252502 (2010))

¹⁸⁰Tl

- → EC/beta+ decays to ¹⁸⁰Hg (Z=80, N=100)
- \rightarrow Populates states around fission barrier
- → Asymmetric mass pattern (not symmetric ⁹⁰Zr+⁹⁰Zr)

Limitations of EC studies...

- No information on total spin (J) parity (π) excitation energy (Ex)
- Ex < Q(beta) ~ 10 MeV

Determination of potential energy surface

Keyword : potential energy surface

Please imagine putting golf

Asymmetric / symmetric pattern of elements made by fission

How do you know the potential energy?

Specht, 1974 (mass asymmetric / symmetric) ASYMM SYMM Probability of fission An example of ²²⁶Ra (stable isotope \rightarrow proof of principle) 5 10 The energy of the initial state The top part of the hill

New approach : missing mass w/ RI beam Tech. breakthrough : seg. neutron detector SAMURAI spectrometer seg. ion chamber

The height of the side part of the hill

New approach @ RIKEN

RIKEN RIBF x missing mass x SAMURAI spectrometer
→ All the fragments with excitation energy information
with an uncertainty of ~1 MeV over a wide energy range (up to ~ 50 MeV or so...)
→ PERFECT!!!

A test experiment (performed in spring, 2014)

A top view of setup

Ex resolution : this time, we didn't measure Fission fragments : Kinetic energies (from Brho analysis) and emission angles (4-momentum vectors) Charge res. ~0.2 Mass res. ~0.3

Preliminary analysis results...

The analysis of this part is being done by M. Sako (Postdoc, RIKEN, Nishina Center)

Experimental Setup After SAMURAI

ICF : 75cm(4 divide) * 48cm(12 layers) HODO : 10cm(width)*5mm(thickness)*7 TED(CsI) :10*10*10cm³ * 8*4

Analysis data : run#443 magnet setting : 2.54 T U beam hit mainly hodo ch=3

preparation for fission analysis

- select the event which has 2 separate hit @ HODOSCOPE
- -> check hit pattern of upstream and downstream counter
- ->2 tracking analysis with drift chamber

multiplicity = 2 @ HODO

ICF hit pattern

event selection : multiplicity = 2 @ HODO 1st hit ch =6 and 2nd hit ch =1

QDC value of ICF is average of 12 layers (ICF is consist of 12 anode layers)

The hit ch of ICF is corresponding to the HODO

TED hit pattern

event selection : multiplicity = 2 @ HODO 1^{st} hit ch =6 and 2^{nd} hit ch =1

TED is consist of 8(horizontal) \times 4(vertical)

The center of beam height

was set to the second layer from the bottom

These histograms are the QDC value of the second layer from the bottom

Delta E vs E

Development of (p,2p) setup

(p,2p) setup

• We need following resolution for the proton energy E_p :

$$\frac{\Delta E_p}{E_p} \leq 2\% \quad \text{(in sigma)} \tag{1}$$

• This energy resolution is equivalent to a minimum time of flight (TOF) resolution of

$$\frac{\Delta TOF}{TOF} \leq 1.5\% \quad \text{(in sigma)} \tag{2}$$

• The determination of the fission barrier height requires also the measurement of the opening angle θ_{op} between the two emitted protons. The second condition of the setup is to provide an angular resolution of

 $\Delta \theta_{op} \leq 3 \mod (\text{in sigma}).$ \implies Fission barrier uncertainty ~< 1 MeV in sigmage

Missing mass energy resolution ~ 300 keV/mr x Opening resolution in milli radial

OF detectors

Thin silicon detectors

Design of Silicon detector

A technical challenge

- Thin silicon (~ 50 microns)
- \rightarrow small signals

(100 keV energy loss for 200 MeV protons)

- \rightarrow S/N is the key
- \rightarrow A solution :

AC type Silicon detectors coupled with APV25

Being prepared by Sebastian Reichert &

Summary

- Measurement of the fission fragment with the missing energy info.
- \rightarrow Energy surface of the fission process
- At RIKEN, complete information will be obtained;
 - Ex: 0~a few tens MeV

with a resolution of 1MeV in sigma Fission fragments : (A,Z, Kinetic energy) Neutrons : multiplicity and their energies

- A test experiment of SAMURAI
 →Fission fragment identification works
- Thin silicon detectors are the key factor and being developed for the fission barrier height determination