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Importance of fission

From [2] 

 → Fission barrier height is the key

Motivation: Origin of the abundance and 
distribution of nuclei beyond iron 
in the universe [1]

→ Core collapsing supernovae and neutron star mergers

→ Neutron capture faster than β- decay

→ Neutron rich nuclei far off the stable
 nuclei near or at neutron drip line

→ Liquid drop model: 
Transition from spherical
nuclei to ellipsoidal shape

→ Spontaneous fission

→ Recycling of the r- process determines the abundance of heavy elements

Fission



Theoretical predictions
for the fission barrier height

● Decreasing fission barrier
● Maxima at closed neutron 

shells
● Macroscopic microscopic 

models

Droplet model
+ shell 
correction

Thomas-Fermi
+ shell 
correction

 → Not fully understood and especially not verified by 
  experimental data

From [3] 



Experimental methods: (d,p)

● Normal kinematics:

– Light ion beams

– Target material near
stable isotopes

● Transfer reactions (d,p) at
low beam energies

● Energy of proton and Q value→  
Excitation energy in final
nucleus [4,5]

k⃗ 2

A q⃗tr

E* > EFB

 → Limited by target isotope

( p⃗d , E d )
( p⃗ p , E p)

( p⃗A+1 , E A+1)

( p⃗FISS2 , EFISS2)

( p⃗FISS1 , E FISS1)

Eγ

(mA)



Determination of fission barrier height of 
nuclei far off the stability line: (d,p)

● Inverse kinematics

– Exotic beam far off 
stability line

– Thin deuteron target
● Transfer reactions with

low proton energies

 

E* > EFB

 → Low count rate

( p⃗A+1 , E A+1)

( p⃗A , E A)

( p⃗ p , E p)

( p⃗FISS2 , EFISS2)

( p⃗FISS1 , E FISS1)

Eγ

(md )



Our approach: (p,2p) in inverse kinematics

● Inverse kinematics

– Exotic beam far off 
stability line

– Thick hydrogen target
● Knock out reactions with

high proton energies
● Missing mass in QFS [6]:

 M A
2 + pA

2 +m p
2=m p1

2 + p p1
2 +mp2

2 + p p2
2 +M A−1

2 + pA−1
2

 → High count rate

E* > EFB

( p⃗FISS2 , EFISS2)

( p⃗FISS1 , E FISS1)

Eγ

( p⃗A , E A)

( p⃗A−1 , E A−1)

p⃗A−1= p⃗A− p⃗ p1− p⃗ p2

( p⃗ p2 , E p2)

( p⃗ p1 , E p1)

(m p)



Goal and requirements on the setup

● Goal: 
Fission barrier height with 1 MeV resolution (in σ)

● Requirements:

– Energy resolution of the protons
ΔE/E = 2% (in σ)

– Angular straggling of the opening angle
Δθop = 3 mrad (in σ)

– Systematic uncertainty = 0.1 MeV (in σ)



'Competition' with R³B

● RIBF: Beam energy at 250 MeV/u
● Two emitted protons have 120 ± 40 MeV

→ Measuring energy: Relatively easy with TOF detectors 
at 1.6 m distance; ~100 ps (in σ)

→ Measuring angle: Very difficult; ~1 mrad (in σ) in
 tracking → Material must be minimized

● GSI: Beam energy at 700 MeV/u
● Two emitted protons have 350 ± 40 MeV

→ Measuring energy: Very difficult, only with TEDs

→ Measuring angle: Relatively easy (small ang. strgg.)



'Competition' with R³B

Data from [7,8,9] → Setup optimized for our purpose

SAMURAI R³B

Beam [MeV/u] 250; Max.: 350 700; Max: 1500

Target 40 mg/cm² LH2 100-250 mg/cm² LH2 
Active Target

Energy range for protons [MeV] TOF detectors: 80 - 200 CALIFA: up tp 320

Proton energy EP resolution in 
sigma ΔEP/EP for EP=100 MeV

2% 1%

Vertex reconstruction
Pitch size [µm]
Inner layer thickness [µm]

Silicon detectors
100
50

Lampshade detectors
50
100

Angular resolution for the opening 
angle θOP in sigma [mrad]

~3 ~1

Space coverage
in polar angle θ [degree]
in azimuthal angle φ [degree]

2 · 24 (28 - 52)
2 · 24

125 (5 – 130)
360

Next talk: 
M. Sasano



Proposal for test experiment at HIMAC

● (p,2p) setup test w/ thin Si det.

● 16O at 290 MeV/u
with 105 pps

● Known excitation 
spectrum with two 
sharp peaks at 
Ex = 0 MeV and 6.3 MeV

 → Goal: Determination of Ex systematic and statistical 

  uncertainties within the required resolution



Setup at HIMAC



Setup at HIMAC

● Autumn 2015: CH2 Target

– Syst. uncertainties

– Silicon detector
configuration

● Spring 2016: LHT

– Test final setup

– Study on influence
of the ang. strgg. 
from the target

 → Ready for RIKEN!

Next talk: 
M. Sasano



Conclusion

● Fission barrier height for neutron rich heavy nuclei 
important for the understanding of the recycling of 
the r- process

● Theoretically not fully understood
● Our approach: Inverse kinematics and nucleon 

knock-out
● Thin Si detector for the first layer is the key for the 

(p,2p) setup in RIBF energy domain
● Submitted proposal for test experiments at HIMAC 
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