Study of fission barriers in neutron-rich nuclei using the (p,2p) reaction: Status of SAMURAI-Experiment NP1306 SAMURAI14

Sebastian Reichert^{1,2}

M. Sako², D. Mücher¹, M. Sasano², A. Andreyev³, T. Aumann⁴, H. Baba², M. Dozono⁵, N. Fukuda², R. Gernhäuser¹, W.F. Henning⁶, N. Inabe², D. Kameda², H. Kentaro³, N. Kobayashi², T. Kobayashi⁸, Y. Kondo⁹, T. Kubo², Y. Kubota^{2,5}, T. Le Bleis¹, Y. Matsuda¹⁰, S. Mitsuoka⁴, T. Motobayashi², T. Nakamura⁹, I. Nishinaka³, K. Nishio³, R. Orlandi³, H. Otsu², V. Panin², S. Paschalis³, H. Sato², Y. Shimizu², H. Suzuki², H. Takeda², T. Uesaka², K. Yoneda², J. Zenihiro²

1: TU Munich, 2: RIKEN Nishina Center, 3: ASRC JAEA, 4: TU Darmstadt, 5: Center for Nuclear Studies, University of Tokyo, 6: ANL, 8: Tohoku University, 9: Tokyo Institute of Technology, 10: Kyoto University

22th ASRC Workshop

December 2014

Outline

- Importance of fission
- Theoretical predictions
- Present experimental methods
- Our approach: (p,2p) measurement
- Requirements of the experiment
- Comparison with R³B
- Proposal for test experiment at HIMAC

Importance of fission

 \rightarrow Fission barrier height is the key

Theoretical predictions for the fission barrier height

- Decreasing fission barrier
- Maxima at closed neutron shells
- Macroscopic microscopic models

→ Not fully understood and especially not verified by experimental data

Experimental methods: (d,p)

- Normal kinematics:
 - Light ion beams
 - Target material near stable isotopes
- Transfer reactions (d,p) at low beam energies
- Energy of proton and Q value→ Excitation energy in final nucleus [4,5]
- \rightarrow Limited by target isotope

Determination of fission barrier height of nuclei far off the stability line: (d,p)

 (\vec{p}_A, E_A)

- Inverse kinematics
 - Exotic beam far off stability line
 - Thin deuteron target
- Transfer reactions with low proton energies

\rightarrow Low count rate

Our approach: (p,2p) in inverse kinematics (\vec{p}_{pl}, E_{pl})

 (\vec{p}_A, E_A)

 $\bigcirc (m_n)$

 $(ec{p}_{\scriptscriptstyle A-1}$, $E_{\scriptscriptstyle A-1}$

- Inverse kinematics
 - Exotic beam far off stability line
 - Thick hydrogen target
- Knock out reactions with high proton energies
- Missing mass in QFS [6]: $M_{A}^{2} + p_{A}^{2} + m_{p}^{2} = m_{pl}^{2} + p_{pl}^{2} + m_{p2}^{2} + p_{p2}^{2} + M_{A-1}^{2} + p_{A-1}^{2} \qquad (\vec{p}_{FISS2}, E_{FISS2})$ $\vec{p}_{A-1} = \vec{p}_{A} - \vec{p}_{pl} - \vec{p}_{p2}$ $\rightarrow \text{High count rate} \qquad (\vec{p}_{FISS1}, E_{FISS1})$

Goal and requirements on the setup

- Goal:
 - Fission barrier height with 1 MeV resolution (in σ)
- Requirements:
 - Energy resolution of the protons $\Delta E/E = 2\%$ (in σ)
 - Angular straggling of the opening angle $\Delta \theta_{op} = 3 \mod(\sin \sigma)$
 - Systematic uncertainty = $0.1 \text{ MeV} (\text{in } \sigma)$

'Competition' with R³B

- RIBF: Beam energy at 250 MeV/u
- Two emitted protons have 120 ± 40 MeV
 - \rightarrow Measuring energy: Relatively easy with TOF detectors at 1.6 m distance; ~100 ps (in σ)
 - \rightarrow Measuring angle: Very difficult; ~1 mrad (in σ) in tracking \rightarrow Material must be minimized
- GSI: Beam energy at 700 MeV/u
- Two emitted protons have 350 ± 40 MeV
 - \rightarrow Measuring energy: Very difficult, only with TEDs
 - \rightarrow Measuring angle: Relatively easy (small ang. strgg.)

'Competition' with R³B

	SAMURAI	R ³ B
Beam [MeV/u]	250; Max.: 350	700; Max: 1500
Target	40 mg/cm ² LH ₂	100-250 mg/cm ² LH ₂ Active Target
Energy range for protons [MeV]	TOF detectors: 80 - 200	CALIFA: up tp 320
Proton energy E_P resolution in sigma $\Delta E_P / E_P$ for $E_P = 100$ MeV	2%	1%
Vertex reconstruction Pitch size [µm] Inner layer thickness [µm]	Silicon detectors 100 Next tak: 50 M. Sasano	Lampshade detectors 50 100
Angular resolution for the opening angle θ_{OP} in sigma [mrad]	~3	~1
Space coverage in polar angle θ [degree] in azimuthal angle φ [degree]	2 · 24 (28 - 52) 2 · 24	125 (5 – 130) 360

 \rightarrow Setup optimized for our purpose

Data from [7,8,9]

Proposal for test experiment at HIMAC

- (p,2p) setup test w/ thin Si det.
- ¹⁶O at 290 MeV/u with 10⁵ pps
- Known excitation spectrum with two sharp peaks at $E_x = 0$ MeV and 6.3 MeV

 \rightarrow Goal: Determination of E_x systematic and statistical uncertainties within the required resolution

Setup at HIMAC

Setup at HIMAC

- Autumn 2015: CH₂ Target
 - Syst. uncertainties
 - Silicon detector configuration
- Spring 2016: LHT
 - Test final setup
 - Study on influence of the ang. strgg. from the target

 \rightarrow Ready for RIKEN!

Conclusion

- Fission barrier height for neutron rich heavy nuclei important for the understanding of the recycling of the r- process
- Theoretically not fully understood
- Our approach: Inverse kinematics and nucleon knock-out
- Thin Si detector for the first layer is the key for the (p,2p) setup in RIBF energy domain
- Submitted proposal for test experiments at HIMAC

References

- [1] H. Ning, Heavy Element Nucleosynthesis in Shocked Carbon-oxygen Layers and Hydrogen envelopes of O-Ne-Mg core collapse supernovae (2007)
- [2] http://www.pas.rochester.edu/~cline/Research/sciencehome.htm
- [3] J. Mamdouh et al.; Nucl. Phys. A **679**, 337 (2001)
- [4] J. Cizewski, Nuclear reaction experiments with rare isotopes: Probing nuclear structure, reactions and nucleosynthesis, Presentation in EBSS (2011): (with (d,p) reactions) https://people.nscl.msu.edu/~zegers/ebss2011/cizewski.pdf
- [5] B. Back, J. P. Bondorf et al., Nuclear Physics A165 (1971) 449-474
- [6] T. Aumann et al., PHYSICAL REVIEW C 88, 064610 (2013)
- [7] T. Aumann et al., Technical report for the Design, Construction and Commissioning of the CALIFA Barrel: The R³BCALorimeter for In Flight detection of γ-rays and high energy charged particles (2011)
- [8] http://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=2108
- [9] http://www.smith.edu/nusym11/docs/Chartier.pdf

FIG. 2. Deuteron-induced fission cross section on (a) ²³²Th and (b) ²³⁸U. The solid lines represent the fitting of proton data [23], whereas, the dashed lines represent the fitting of deuteron data according to the parameters given in Table III.

PHYSICAL REVIEW C 87, 067602 (2013)

High-energy fission cross sections induced by deuterons on ²³²Th and protons on ^{nat}Pb targets

M. Zamani,¹ S. Stoulos,^{1,*} M. Fragopoulou,¹ and M. Krivopustov² ¹Aristotle University of Thessaloniki, School of Physics, Thessaloniki 54 124, Greece ²Joint Institute for Nuclear Research (JINR), Dubna 141980, Russia