

Isotopic Fragment Distribution of Minor Actinides produced in Transfer Reactions

D. Ramos¹, C. Rodríguez-Tajes², M. Caamaño¹, F. Farget², L. Audouin³, J. Benlliure¹, E. Casarejos⁴, E. Clement², D. Cortina¹, O. Delaune², X. Derkx^{5,*}, A. Dijon², D. Doré⁶, B. Fernández-Domínguez¹, G. de France², A. Heinz⁷, B. Jacquot², A. Navin², C. Paradela¹, M. Rejmund², T. Roger², M.-D. Salsac⁶, C. Schmitt²

 (1) GENP, Dpto. Física de Partículas, USC, Santiago de Compostela, Spain. (2) GANIL, CEA/DMS - CNRS/IN2P3, Caen, France. (3) IPN Orsay, Université de Paris-Sud XI - CNRS/IN2P3, Orsay, France. (4) CIMA, Escuela Técnica Superior de Ingenieros Industriales, UVigo, Vigo, Spain.
(5) LPC Caen, Université de Caen Basse-Normandie – ENSICAEN - CNRS/IN2P3, Caen, France. (6) CEA Saclay, DSM/IRFU/SPhN, Saclay, France. (7) Chalmes University of Technology, Göteborg, Sweden.

Tokai, Japan

Limitations of Direct Kinematics

Goals of Inverse kinematics

Kinematical boost increases the kinetic energy of the fission fragments providing the capability of a direct identification

Kinematical boost allows to keep a wide angular coverage in the CM frame when the size of the detectors is limited Fission fragment Z matrix identification

M. Caamaño et al. PRC 024605 (2013)

Reaction Mechanism

Fissioning systems not accessible from any other mechanism

10% above Coulomb barrier

Transfer-Fission:

10 n-rich actinides produced with a distribution of E_X below 30 MeV

Fusion-Fission:

production of ${}^{250}Cf$ with $E_X = 45$ MeV 10 times more likely than any transfer channel

Transfer Reaction and Excitation Energy

E_x (MeV)

C. Rodriguez-Tajes et *al.*, PRC (2014) 024614

Fission Probabilities & Excitation of Target-like Recoil

We observe a general agreement with previous data with small discrepancies

this experiment provides data never measured before for ²⁴²Pu and ²⁴⁴Cm

C. Rodriguez-Tajes et *al.*, PRC (2014) 024614

Fission Probabilities & Excitation of Target-like Recoil

We observe a general agreement with previous data with small discrepancies

C. Rodriguez-Tajes et al., PRC (2014) 024614

this experiment provides data never measured before for ²⁴²Pu and ²⁴⁴Cm

γ-rays measurements show excited states in ¹²C, ¹¹B and ¹⁰Be in coincidence with fission with $P_{\gamma} = 0.12-0.14$

Fission Fragments Detection

S. Pullanhiotan et al., NIM A 593 (2008) 343

Fission Fragments Identification

Mass Identification

Proton Number Identification

A/Q provides the Q separation and contributes to a better A resolution

γ-rays in coincidence with fissionfragments provide a cross checkfor the Z and A identification

A. Shrivastava et al. PRC 80 (2009) 051305

Transmission through VAMOS

The detection is limited by the transmission

 $Y(Z, A) = I(Z, A) \frac{2}{Range(Z, A)}$

We need to recover all the charge states per isotope and compensate the acceptance in the azimuthal and polar angles

Beam normalization for different settings is required as well

Isotopic Fission Yields

²⁵⁰Cf

Isotopic Yields in 3 orders of magnitud

Isotopic Yields in 2 orders of magnitud

²⁴⁰Pu

Fission Yields

Isotopic yields distribution of 4 different fissioning systems, most of them exotic nuclei

New complete measurements, difficult to produce by n-capture

Measurements of fission fragment distributions of ²³⁹Np is scarce $T_{1/2}$ (²³⁸Np) = 2.1 d The contribution of the symmetric mode disappears for the systems at low excitation energy

The shift in Z of the light fragments reflects the atomic number of the fissioning system

Charge Polarization

Evolution of the polarization with the E_x and the **fissioning system**

Clear accumulation of N driven by the double magic nucleus ¹³²Sn

Charge Polarization present in all the systems

Evolution with Excitation Energy

Comparison with previous data

²⁴⁰Pu

Evolution form asymmetric to symmetric fission by the effect of the excitation energy

3 different regions of E_x were selected through the transfer reaction reconstruction

Evolution with Excitation Energy

The $\langle N \rangle / Z$ ratio gets reduced around $Z \approx$ 50 by increasing E_x , signature of a closed shell which effect is smaller for higher E_x .

²⁴⁰Pu

3 different regions of E_x were selected through the transfer reaction reconstruction

Total Kinetic Energy

Ex (MeV)

Conclusions

Transfer-induced fission in inverse kinematics coupled to the VAMOS spectrometer allowed us to:

Measure the fission of different fissioning systems, most of them exotic nuclei.

Identify the fissioning systems through the reconstruction of transfer reaction channels.

Measure the excitation energy distribution and fission probabilities of each system.

Obtain full isotopic identification of fission fragments using the VAMOS spectrometer.

The effect of closed shells was observed and can be study as a function of the excitation energy in $\langle N \rangle / Z$, TKE, A and Z distributions.

An evolution of the fission fragments from asymmetric to symmetric distributions is observed to follow the excitation energy.

The $\langle N \rangle / Z$ ratio in Z \approx 50 is observed to decrease by increasing the excitation energy.