FISSION YIELD MEASUREMENTS WITH JYFLTRAP

Heikki Penttilä The IGISOL group University of Jyväskylä, Finland

😳 Seinäteksti Jyväskylän yliopiston vanhassa juhlasalissa (1882)

Quick orientation

The IGISOL-4 facility at JYFL

Fission ion guide technique

Based on survival of primary ions from nuclear reaction in helium buffer gas
Fast extraction of ions is required to prevent neutralisation
Charge state concentration: (0), +1, (+2)
Produces ions of any element All elements can be studied
All ions come <u>directly from fission</u> Ion rate in the formed beam corresponds

to the independent fission yield

Fission ion guide technique

Based on survival of primary ions from nuclear reaction in helium buffer gas
Fast extraction of ions is required to prevent neutralisation
Charge state concentration: (0), +1, (+2)
Produces ions of any element
All elements can be studied
All ions come directly from fission
Ion rate in the formed beam corresponds to the independent fission yield

Isotopic purification with JYFLTRAP

Isotopic purification with JYFLTRAP

Isotopic purification with JYFLTRAP

From mass spectra to yield distribution

Mass dependency of the stopped ions

Simulations made by Uppsala Universitet collaboration

http://arxiv.org/abs/1409.0714

Stopped ions as a function of Ni foil thickness

Projection Y

щ

Light

Heavy

Impact of stable isotope ions

Limits of resolving: overlapping isotopes

Even more challenging resolving by fit

Task for a fit master – at limits of the first trap

Presenting the results

25 MeV p + ^{nat}U fission : widths

25 MeV p + ^{nat}U fission : centroids

From isotopic yields to absolute yields?

Independent absolute yields?

Future: neutron induced fission - concept

Neutron converter design

Neutron converter flux test (March 2014)

IGISOL group and relevant collaboration:

JYFL-IGISOL: H. Penttilä, A. Jokinen, I.D.Moore, J. Äystö, V.A. Rubchenya, S. Rinta-Antila, V. Kolhinen, T. Eronen, A. Kankainen, A. Voss, D. Gorelov, J. Hakala, V. Simutkin, V. Sonnenschein, I. Pohjalainen, J. Koponen, J. Reinikainen

Uppsala University: A. Al-Adili, K. Jansson, M. Lantz, A. Solders, C. Gustavsson, A.Mattera, A. V. Prokofiev, V. Rakopoulos, D.Tarrío, S. Wiberg, M.Österlund, S. Pomp

This work has been supported by Academy of Finland via several projects and the Centre of Excellence program, and by EU via ERINDA project (2010-2013) and will be supported by CHANDA project (2013-2017).

