Two decades of collaboration
with Peter Moller

Akira Iwamoto, JAEA and Juntendo Univ.



At the start of our collaboration

In 1991-1992, my nuclear physics laboratory in JAERI

(how JAEA) invited Peter Moller for several months and we
started the first collaboration work.

In 1993, the laboratory was reorganized into “Advanced
Science Research Center”. The laboratory survived up to
now as the basic nuclear physics group in the Center.

First collaboration paper with Peter Moéller appeared in 1994,
from which 2—decades passed.



Talk is organized along the
following 3 streams

1. First collaboration paper and following
works

2. Fission barrier calculus

3. '80Hg and new type of asymmetric fission



1. First collaboration paper
and following works

The first target of our collaboration : develop a general purpose
code to calculate the nucleus—nucleus potential

The model was based on the double—folding model where
the folding integral was calculated with Yukawa—plus—
exponential folding function. The original six—dimensional
integral for both volumes of nuclei can be reduced to
four—dimensional integral over both surfaces of nuclei,

assuming constant density sharp—surface nuclei.
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This model is used evervwhere when we
calculate the macroscopic ion-ion potential
energyv

¢ For example, in searching of the candidate reactions for
SHE production, we proposed “Hugging Fusion” concept.

¢ It is very effective for getting the strong nuclear force
between two ions but because of the offset of it' s
configuration, the relative Coulomb force is not so strong.
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Kokeshi configuration with calculated ground-state shapes

Fig. 19. Polar-parallel Kokeshi configuration of '"*Cd + "™W for shapes comesponding o calculaied
ground-state deformation parameters; that is, the configuration is [o, p'_l ]. The arrow gives the direction

of the incident beam. Fusion-barrier parameters for this configuration/direction are given on line 16 of
Tahle 1.

4.2, Oblate fusion configurations
We showed above that the sign of €4 significantly influenced fusion-barrier properties
of colliding heavy ions. Correspondingly, one anticipates that the sign of &; has a large

effect on the fusion barrier, so in Figs. 19 and 20 we give two examples of fusion
configurations corresponding to an oblate projectile and a prolate target for the reaction

118Cd+ 1Bﬁw

Equatorial-transverse configuration with calculated ground-state shapes

=

Fig. 20. Equatorial-transverse configuration of ”“(‘da— IREWY fiar shapes corresponding 1o calculated ground-state
deformation parameters; that is, the configuration is [0, p~.<]. The arrow gives the direction of the incident
beam. Fusion-barrier parameters for this configuration/ direction are given on line 17 of Table 1.

A. Iwamoto et al. / Nuclear Physics A 596 (1996) 329-354
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In the incident channel of cold fusion reaction, projectile
Is expected to be highly deformed near the fusion barrier.

In addition, what’ s interesting is that we always find, in
the one—body fission configuration, there exists a fission
valley with almost spherical Pb(Bi)-like plus highly
deformed projectile—like configuration!
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2. Fission barrier calculus

When we need many shape parameters to specify the fissioning
nucleus, there exist many saddle points. (We use macroscopic—
microscopic model)

The lowest and some of near lowest ones are important for low
energy fission.

How to fix them is an important and not an easy task.

At first glance, constrained HF, HFB models looks more feasible
to attack this problem, but it isn’ t!!

For example, how to fix the second lowest and third lowest ones?
Is the lowest one obtained is really lowest? (If there isn’ t the way
to fix the second lowest, no one can say yes.)



Real saddle point is a point of minimum after the
minimization with respect to theta

Minimization Fallacies lillustrated
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Techniaues for fixing multiple saddles
heights and locations

¢ Water immersion (flooding) method, dam
method.

Flooding Method Dam Method
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Mystery of bimodal fission

Bimodal Fission
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Mass yield curves for SF

FIGURE 6 et
¢ of mass-yield distributions (normalized to 200% fission fr
or SF of trans-Bk isotopes, 1989.

We thought we have understood it
but the whole understanding of life—
time is yet out of our reach

Graphics by Peter Méller

Fermium Bimodal Saddle-Point Shapes

*5Fm: Higher outer saddle (Towards high TKE) | 25®Fm: Higher outer saddle (Towards low TKE)

€,=0.1500 ¢,=0.0500 M/M, =128.0/128.0 €,=0.1000 ¢,=0.1000 M,/M, =152.2/105.8

?5Fm: Lowest outer saddle (Towards low TKE) | 2*Fm: Lowest outer saddle (Towards high TKE)

€,=0.1500 €,=0.2000 M/M,=145.9/110.1 €,=0.0000 €,=0.1000 M/M, =129.0/129.0
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Nature 409, 785-790 (15 February 2001) articles

Nuclear fission modes and fragment

mass asymmetries in a
five-dimensional deformation space
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Established a method of fixing the multiple saddle points
systematically in full 5—dimensional parameter space

Transition of mass asymmetric to symmetric fission of
256Fm to 2°°Fm was reproduced

Peak mass asymmetry was reproduced systematically well
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Elevation 7245 ft.

Rainfall divides at this point. To the'west it
drains into the Pacific Ocean, to the east,
into the Atlantic.




3. 180Hgo and new tvpe of
asvmmetric fission

¢ A very exotic process of B—delayed (e—capture)
fission of 80T| was studied at ISOLDE

¢ In contrast to traditional expectation, the low—
energy fission of '8%Hg,,, showed an asymmetric

fission (A,/A, ~ 100/80), not symmetric two
0Zrey s

week ending
PRL 105, 252502 (2010) PHYSICAL REVIEW LETTERS 17 DECEMBER 2010
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¢ It is a new type of fission in mass lighter than
200 region, where the mass asymmetric fission is
not an exceptional phenomenon but expected to
appear quite commonly.

¢ A new era of fission search was started!!



PM: So, do you need a PES for 180Hg?
CLDM: Clay Liguid Drop Model (2008, to be published yet)

PM: “Look, it’ s trivial..™
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New aspects of 18VHgo

¢ It occurs a coexistence of fission and fusion valley
between second minimum and scission region
(including outer barrier).

¢ The asymmetric fission valley is LD dominant (small
shell effect causes mass asymmetry) and fusion
valley is shell + LD dominant, which feature is In
sharp contrast with typical actinide nuclei.
(resembling in Fm isotopes)

¢ Vast and flat potential energy surface in the above
region necessitates a careful treatment of the
(mass and) friction tensors.



Finally

¢ Thank you Peter for more than two decades
of interesting collaborations.

¢ Hoping to develop our works to get a deeper
understanding of nuclear fission and related
topics!
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