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Steep falloff of fusion cross sections
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Standard CC calculations largely deviate from experimental 
data below a certain threshold incident energy

C. L. Jiang et al., Phys. Rev. Lett. 93, 012701 (2004)




16O + 208Pb



What is a key physical quantity?
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Energy at the touching point strongly correlate with 
threshold incident energy Es

Threshold incident energy

Es ~ 89 MeV

Potential energy at the 
touching point


VTouch ~ 88.61 MeV



Tunneling in overlap region

Subbarrier energies (E > Vtouch) 

• Inner turning point 
→ Outside of touching point


Deep subbarrier energies (E < Vtouch) 

• Inner turning point 
→In the overlap region 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Sudden ?

Adiabatic ?

Decoherence ?

Deep-subbarrier fusion

Steep fall-off phenomenon can be attributed to dynamics 
after target and projectile touch with each other 

TI, K. Hagino, and A. Iwamoto, Phys. Rev. C 75, 064612 (2007) 
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Sudden and adiabatic approaches

Sudden Approach 
 
  →Shallow potential pocket


• Frozen density approximation 
Mişicu and Esbensen


Quantum decoherence of 
channel wave function 
 
  →Coupling to thermal bath


• Dasgupta et al. and Diaz-Torres 

Ş. Mişicu and H. Esbensen, Phys. Rev. Lett. 96, 112701 (2006)




Adiabatic potential energy
Assuming that neck formations between colliding two nuclei occur 
after the touching, we smoothy joint between the two and one body 
potential energies


• describe the one-body shapes by the Lemniscatoid parametrizationBRIEF REPORTS PHYSICAL REVIEW C 75, 057603 (2007)

FIG. 1. (Color online) One- and two-body potential energies for
64Ni+64Ni obtained with the KNS model as a function of the center-
of-mass distance. The shape for the one-body configuration described
by the Lemniscatoids parametrization is also shown. The filled circle
and square denote the touching configuration and the ground state
of the compound system, respectively. The dotted line is the sudden
potential taken from Ref. [7].

to fit the experimental fusion cross section at high incident
energies. The touching configuration is denoted by the filled
circle in the figure. For distances larger than the touching
point, the potential energy for the two-body system is calcu-
lated as the sum of the Coulomb energy for two point charges
and the nuclear energy given by Eq. (17) in Ref. [10]. For
the one-body system after touching two nuclei, we assume
that the shape configuration is described by the Lemniscatoids
parametrization (see the inset in the figure) [13], and calculate
the Coulomb and surface integrals for each configuration [10].

We find that the value of the potential energy at the
touching configuration Vtouch is 88.61 MeV. This is exactly
the energy Es at which the experimental fusion cross section
start to fall off abruptly in this reaction [2]. This strongly
suggests a correlation between the observed fusion hindrance
and a process after the two nuclei overlap each other. For a
comparison, the sudden potential which Mişicu and Esbensen
considered [7] is denoted by the dotted line in the figure. We
find that the adiabatic KNS potential and the sudden potential
almost coincide with each other outside the touching radius.

In order to describe the two-body process from a large
distance to the touching point, we employ the standard CC
formalism by taking into account inelastic excitations in
the colliding nuclei. However, it is not straightforward to
extend this treatment to the one-body process. In the CC
formalism, the total wave function is expanded with the
asymptotic intrinsic states of the isolated nuclei, in which one
usually restricts the model space only to those states which
are coupled strongly to the ground state. Apparently, such
asymptotic basis is not efficient to represent the total wave
function for the one-body dinuclear system, and in principle
one would require to include all the intrinsic states in the
complete set. This is almost impossible in practice. Moreover,
the adiabatic one-body potential with the neck configuration
already includes a large part of the channel coupling effects,
and the application of the standard CC formalism would result
in the double counting of the CC effect.

In order to avoid these difficulties, we here propose a simple
phenomenological model, in which the two- and one-body
processes are defined independently and time-sequentially.
The fusion cross section in this two-step model then reads

σ (E) = πh̄2

2µE

∑

ℓ

(2ℓ + 1)Tℓ(E)P1bd(E, ℓ), (1)

where µ and E denote the reduced mass and the incident
energy in the center-of-mass system, respectively. Tℓ is the
capture probability for the two-body process estimated with
the CC method. P1bd is the penetrability for the adiabatic
one-body potential to reach the compound state after the
touching of two-body potential, which plays an important
role at energies below Vtouch (i.e., below the dashed line in
Fig. 1). At these energies, the fusion reaction is described
not only by the two-body potential, but the potential which
governs the fusion dynamics is switched from the two-body to
the adiabatic one-body potential at the touching configuration.
Only after overcoming (or penetrating through) these two- and
one-body barriers, the system can form a compound nucleus.
One may regard the one-body penetrability P1bd as a fusion
spectroscopic factor, which describes the overlap of wave
function between the scattering and the compound states.

In order to estimate the capture probability Tℓ within the
two-step model, we cut the two-body potential at the touching
configuration as shown in the upper panel of Fig. 2. The
capture probability does not depend strongly on how to cut
the potential, since only the lowest two-body eigenpotential,
which is obtained by diagonalizing the coupling Hamiltonian
[1,14,15], is relevant at deep sub-barrier energies. As indicated
by the dashed line in the figure, the inner turning point for
the lowest eigenpotential is still far outside the touching
distance. Thus, the actual shape of the original potential in
the inner-barrier region influences little on the penetrability.
Another view is that the incoming wave boundary condition

FIG. 2. (Color online) The internucleus potential used in the
two-step model. The solid line in the upper panel denotes the KNS
potential for the two-body process, which is cut at the touching
configuration, while the dashed line denotes the lowest two-body
eigenpotential. The dash-dotted line denotes the position at which the
incoming wave boundary condition (IWBC) is imposed in the CC
calculation. The solid line in the lower panel denotes the adiabatic
one-body potential inside the touching distance.
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Problems in coupling potential

Double counting of CC effects 
• Adiabatic one-body potential with neck formations already includes a 

large part of the channel coupling effects 

We need an extension of the standard coupled-channel equation

How should we calculate the coupling potential 
around overlap region?
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Coupling potential（Collective model）
Calculation of nn V !φφ coup !!
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Extension of coupled-channel model

Rd = Rp + Rt

TI, K. Hagino, and A. Iwamoto, Phys. Rev. Lett. 103, 202701 (2009) 
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Calculated results: fusion cross section
EPJ Web of Conferences

for the 64Ni+64Ni system, rd = 1.3 fm and ad = 1.3 fm for
the 58Ni+58Ni system, and rd = 1.280 fm and ad = 1.28 fm
for the 16O+208Pb system. Notice that the obtained damp-
ing radius parameters for the three systems which we study
are almost the same.

The parameters of the YPE model are taken as a0 =
0.68 fm, as = 21.33 MeV, and κs = 2.378 from FRLDM2002
[13]. In order to fit the experimental fusion cross sections,
the radius parameter r0 is adjusted to be 1.205 fm, 1.176 fm
and 1.202 fm for the 64Ni+64Ni, 58Ni+58Ni and 16O+208Pb
systems, respectively. For the mass asymmetric system of
16O+208Pb, it is difficult to joint smoothly the potential en-
ergies between the two-body and the adiabatic one-body
systems at the touching point, because the proton-to-neutron
ratio for the one-body system differs from that for the target
and projectile in the two-body system. To avoid this diffi-
culty, we smoothly connect the potential energy around the
touching point to the liquid-drop energy of the compound
nucleus, using the third-order polynomial function (see the
dashed line in Fig. 6). We do this by identifying the in-
ternucleus distance r with the centers-of-masses distance
of two half spheres. We have checked this prescription for
the mass symmetric 64Ni+64Ni system, by comparing to
the potential energy used in our previous work [12]. The
deviation due to this prescription is negligibly small.

Figure 3 shows the fusion cross sections thus obtained.
The fusion cross sections obtained with the damping factor
are in good agreement with the experimental data for all
the systems (see the solid line). For all the systems, we see
that drastic improvement has been achieved by taking into
account the damping of the CC form factors, as compared
to the result without the damping factor (the dashed line).

We also compare the astrophysical S factor represen-
tation of the experimental data with the calculated results,
as shown in Fig. 4. In the calculation, the Sommerfeld
parameter η is shifted by 75.23, 69.99, and 49.0 for the
64Ni+64Ni, 58Ni+58Ni, and 16O+208Pb systems, respectively.
The S factor obtained with the damping factor are consis-
tent with the experimental data for all the systems (see the
solid lines), and reproduce well the peak structure. Notice
that the S factor predicted by our model differs consid-
erably from that of the sudden model by Mişicu and Es-
bensen [5], denoted by the dot-dashed line at the lowest
energies. For all the systems, as the incident energy de-
creases, their S factor falls off steeply below the peak of
the S factor, while our S factor has a much weaker energy
dependence.

Figure 5 compares the logarithmic derivatives d ln(Ec.m.
σfus)/dEc.m. of the experimental fusion cross section with
the calculated results. It is again remarkable that only the
result with the damping factor achieves nice reproduction
of the experimental data. For the 64Ni+64Ni and 58Ni+58Ni
systems, the results with the damping factor becomes satu-
rated below Ec.m.=86 MeV and 94 MeV, respectively. Those
behaviors are similar to the experimental data for the 16O+208Pb
system. The measurement at further lower incident ener-
gies for this system will thus provide a stringent test for
the present adiabatic model.

Figure 6 shows the adiabatic potential of the 16O+208Pb
system, that is, the lowest eigenvalue obtained by diagonal-
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Fig. 3. (Color online) Fusion cross section calculated with the
damping factor versus the incident energy for 64Ni+64Ni (top
panel), 58Ni+58Ni (middle panel), and 16O+208Pb (bottom panel).
The solid and dashed lines denote the calculated result with and
without the damping factor, respectively. The dotted line denotes
the calculated result of the no coupling. The solid and open cir-
cles denote the experimental data taken from Refs. [1,17,7].
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for the 64Ni+64Ni system, rd = 1.3 fm and ad = 1.3 fm for
the 58Ni+58Ni system, and rd = 1.280 fm and ad = 1.28 fm
for the 16O+208Pb system. Notice that the obtained damp-
ing radius parameters for the three systems which we study
are almost the same.

The parameters of the YPE model are taken as a0 =
0.68 fm, as = 21.33 MeV, and κs = 2.378 from FRLDM2002
[13]. In order to fit the experimental fusion cross sections,
the radius parameter r0 is adjusted to be 1.205 fm, 1.176 fm
and 1.202 fm for the 64Ni+64Ni, 58Ni+58Ni and 16O+208Pb
systems, respectively. For the mass asymmetric system of
16O+208Pb, it is difficult to joint smoothly the potential en-
ergies between the two-body and the adiabatic one-body
systems at the touching point, because the proton-to-neutron
ratio for the one-body system differs from that for the target
and projectile in the two-body system. To avoid this diffi-
culty, we smoothly connect the potential energy around the
touching point to the liquid-drop energy of the compound
nucleus, using the third-order polynomial function (see the
dashed line in Fig. 6). We do this by identifying the in-
ternucleus distance r with the centers-of-masses distance
of two half spheres. We have checked this prescription for
the mass symmetric 64Ni+64Ni system, by comparing to
the potential energy used in our previous work [12]. The
deviation due to this prescription is negligibly small.

Figure 3 shows the fusion cross sections thus obtained.
The fusion cross sections obtained with the damping factor
are in good agreement with the experimental data for all
the systems (see the solid line). For all the systems, we see
that drastic improvement has been achieved by taking into
account the damping of the CC form factors, as compared
to the result without the damping factor (the dashed line).

We also compare the astrophysical S factor represen-
tation of the experimental data with the calculated results,
as shown in Fig. 4. In the calculation, the Sommerfeld
parameter η is shifted by 75.23, 69.99, and 49.0 for the
64Ni+64Ni, 58Ni+58Ni, and 16O+208Pb systems, respectively.
The S factor obtained with the damping factor are consis-
tent with the experimental data for all the systems (see the
solid lines), and reproduce well the peak structure. Notice
that the S factor predicted by our model differs consid-
erably from that of the sudden model by Mişicu and Es-
bensen [5], denoted by the dot-dashed line at the lowest
energies. For all the systems, as the incident energy de-
creases, their S factor falls off steeply below the peak of
the S factor, while our S factor has a much weaker energy
dependence.

Figure 5 compares the logarithmic derivatives d ln(Ec.m.
σfus)/dEc.m. of the experimental fusion cross section with
the calculated results. It is again remarkable that only the
result with the damping factor achieves nice reproduction
of the experimental data. For the 64Ni+64Ni and 58Ni+58Ni
systems, the results with the damping factor becomes satu-
rated below Ec.m.=86 MeV and 94 MeV, respectively. Those
behaviors are similar to the experimental data for the 16O+208Pb
system. The measurement at further lower incident ener-
gies for this system will thus provide a stringent test for
the present adiabatic model.

Figure 6 shows the adiabatic potential of the 16O+208Pb
system, that is, the lowest eigenvalue obtained by diagonal-
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Fig. 3. (Color online) Fusion cross section calculated with the
damping factor versus the incident energy for 64Ni+64Ni (top
panel), 58Ni+58Ni (middle panel), and 16O+208Pb (bottom panel).
The solid and dashed lines denote the calculated result with and
without the damping factor, respectively. The dotted line denotes
the calculated result of the no coupling. The solid and open cir-
cles denote the experimental data taken from Refs. [1,17,7].
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for the 64Ni+64Ni system, rd = 1.3 fm and ad = 1.3 fm for
the 58Ni+58Ni system, and rd = 1.280 fm and ad = 1.28 fm
for the 16O+208Pb system. Notice that the obtained damp-
ing radius parameters for the three systems which we study
are almost the same.

The parameters of the YPE model are taken as a0 =
0.68 fm, as = 21.33 MeV, and κs = 2.378 from FRLDM2002
[13]. In order to fit the experimental fusion cross sections,
the radius parameter r0 is adjusted to be 1.205 fm, 1.176 fm
and 1.202 fm for the 64Ni+64Ni, 58Ni+58Ni and 16O+208Pb
systems, respectively. For the mass asymmetric system of
16O+208Pb, it is difficult to joint smoothly the potential en-
ergies between the two-body and the adiabatic one-body
systems at the touching point, because the proton-to-neutron
ratio for the one-body system differs from that for the target
and projectile in the two-body system. To avoid this diffi-
culty, we smoothly connect the potential energy around the
touching point to the liquid-drop energy of the compound
nucleus, using the third-order polynomial function (see the
dashed line in Fig. 6). We do this by identifying the in-
ternucleus distance r with the centers-of-masses distance
of two half spheres. We have checked this prescription for
the mass symmetric 64Ni+64Ni system, by comparing to
the potential energy used in our previous work [12]. The
deviation due to this prescription is negligibly small.

Figure 3 shows the fusion cross sections thus obtained.
The fusion cross sections obtained with the damping factor
are in good agreement with the experimental data for all
the systems (see the solid line). For all the systems, we see
that drastic improvement has been achieved by taking into
account the damping of the CC form factors, as compared
to the result without the damping factor (the dashed line).

We also compare the astrophysical S factor represen-
tation of the experimental data with the calculated results,
as shown in Fig. 4. In the calculation, the Sommerfeld
parameter η is shifted by 75.23, 69.99, and 49.0 for the
64Ni+64Ni, 58Ni+58Ni, and 16O+208Pb systems, respectively.
The S factor obtained with the damping factor are consis-
tent with the experimental data for all the systems (see the
solid lines), and reproduce well the peak structure. Notice
that the S factor predicted by our model differs consid-
erably from that of the sudden model by Mişicu and Es-
bensen [5], denoted by the dot-dashed line at the lowest
energies. For all the systems, as the incident energy de-
creases, their S factor falls off steeply below the peak of
the S factor, while our S factor has a much weaker energy
dependence.

Figure 5 compares the logarithmic derivatives d ln(Ec.m.
σfus)/dEc.m. of the experimental fusion cross section with
the calculated results. It is again remarkable that only the
result with the damping factor achieves nice reproduction
of the experimental data. For the 64Ni+64Ni and 58Ni+58Ni
systems, the results with the damping factor becomes satu-
rated below Ec.m.=86 MeV and 94 MeV, respectively. Those
behaviors are similar to the experimental data for the 16O+208Pb
system. The measurement at further lower incident ener-
gies for this system will thus provide a stringent test for
the present adiabatic model.

Figure 6 shows the adiabatic potential of the 16O+208Pb
system, that is, the lowest eigenvalue obtained by diagonal-
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Fig. 3. (Color online) Fusion cross section calculated with the
damping factor versus the incident energy for 64Ni+64Ni (top
panel), 58Ni+58Ni (middle panel), and 16O+208Pb (bottom panel).
The solid and dashed lines denote the calculated result with and
without the damping factor, respectively. The dotted line denotes
the calculated result of the no coupling. The solid and open cir-
cles denote the experimental data taken from Refs. [1,17,7].

Drastic improvements are achieved by 
damping factor



First derivative of fusion cross section
Fusion11

10–7

10–6

10–5

10–4

10–3

10–2

 85  90  95

S(
E

) (
m

b 
M

eV
)

Ec.m. (MeV)

64Ni + 64Ni

Exp.
Sudden

YPE
+ damping

10–7

10–6

10–5

10–4

10–3

10–2

 95  100

S(
E

) (
m

b 
M

eV
)

Ec.m. (MeV)

58Ni + 58Ni

Exp.
YPE

+ damping

10–7

10–6

10–5

10–4

10–3

10–2

 65  70  75  80

S(
E

) (
m

b 
M

eV
)

Ec.m. (MeV)

16O + 208Pb

Exp.
 

Sudden
YPE

+ damping

Fig. 4. (Color online) Astrophysical S-factor for the 64Ni+64Ni
(top panel), 58Ni+58Ni (middle panel), and 16O+208Pb (bottom
panel) systems versus the incident energies. The meaning of each
line is the same as in Fig. 3. The dot-dashed line is the result of
the sudden model taken from Refs. [5] and [6].
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the same as in Fig. 3.
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line is the same as in Fig. 3. The dot-dashed line is the result of
the sudden model taken from Refs. [5] and [6].

 0

 1

 2

 3

 4

 85  90  95  100

L(
E)

Ec.m. (MeV)

64Ni + 64Ni

Exp.
YPE

+ damping

 0

 1

 2

 3

 4

 90  95  100

L(
E)

Ec.m. (MeV)

58Ni + 58Ni

Exp.
YPE

+ damping

 0

 1

 2

 3

 4

 65  70  75  80

L(
E)

Ec.m. (MeV)

16O + 208Pb

Exp.
 

YPE
+ damping

Fig. 5. (Color online) Logarithmic derivatives of fusion cross
sections, L(E) = d ln(Ec.m.σfus)/dEc.m., for the 64Ni+64Ni (top
panel), 58Ni+58Ni (middle panel), and 16O+208Pb (bottom panel)
systems versus the incident energies. The meaning of each line is
the same as in Fig. 3.

Fusion11

10–7

10–6

10–5

10–4

10–3

10–2

 85  90  95

S(
E

) (
m

b 
M

eV
)

Ec.m. (MeV)

64Ni + 64Ni

Exp.
Sudden

YPE
+ damping

10–7

10–6

10–5

10–4

10–3

10–2

 95  100

S(
E

) (
m

b 
M

eV
)

Ec.m. (MeV)

58Ni + 58Ni

Exp.
YPE

+ damping

10–7

10–6

10–5

10–4

10–3

10–2

 65  70  75  80

S(
E

) (
m

b 
M

eV
)

Ec.m. (MeV)

16O + 208Pb

Exp.
 

Sudden
YPE

+ damping

Fig. 4. (Color online) Astrophysical S-factor for the 64Ni+64Ni
(top panel), 58Ni+58Ni (middle panel), and 16O+208Pb (bottom
panel) systems versus the incident energies. The meaning of each
line is the same as in Fig. 3. The dot-dashed line is the result of
the sudden model taken from Refs. [5] and [6].

 0

 1

 2

 3

 4

 85  90  95  100

L(
E)

Ec.m. (MeV)

64Ni + 64Ni

Exp.
YPE

+ damping

 0

 1

 2

 3

 4

 90  95  100

L(
E)

Ec.m. (MeV)

58Ni + 58Ni

Exp.
YPE

+ damping

 0

 1

 2

 3

 4

 65  70  75  80

L(
E)

Ec.m. (MeV)

16O + 208Pb

Exp.
 

YPE
+ damping

Fig. 5. (Color online) Logarithmic derivatives of fusion cross
sections, L(E) = d ln(Ec.m.σfus)/dEc.m., for the 64Ni+64Ni (top
panel), 58Ni+58Ni (middle panel), and 16O+208Pb (bottom panel)
systems versus the incident energies. The meaning of each line is
the same as in Fig. 3.

Reproduce the saturation at extremely 
low incident energies
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Differs considerably from 
sudden model



Motivation

What is the microscopic origin of the damping factor 
phenomenologically introduced? 
•Coupling potential varnishes around the touching of colliding two nuclei


•Coupling potential strongly correlates with the transition strength 
 
 → Transitions between channels decrease due to the damping of the 
vibrational excitation?

To investigate quantum-mechanical vibrational spectrum, we for the 
first time apply the random-phase approximation (RPA) method to 

the two-body system

Check the transition strengths B(E2 or E3) of target and 
projectile when colliding two nuclei approach each other



Mean-field potential

Folded Yukawa potential 
One-body shape 
→Lemniscatoid parametrization 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Random-phase approximation (RPA) 
method

Since we describe the two-body system by a Slater determinant, it 
is easy to apply the RPA method to the two-body system
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Residual interaction

Density-dependent δ type residual interaction
(Shlomo-Bertsch)
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• neutron-neutron, proton-proton

• neutron-proton

Fine-tune the strength of the residual interaction so that the eigen energy of 
K = 0- mode (center-of-mass motion) becomes zero


t0 = -1100 MeV fm3, t3 = 16000 MeV fm6, x0 = 0.5, x3 = 1.0



Transition density and current

–10 –5  0  5  10
Z (fm)

–4

 0

 4

X 
(fm

)

–10 –5  0  5  10
Z (fm)

–4

 0

 4

X 
(fm

)

–10 –5  0  5  10
Z (fm)

–4

 0

 4

X 
(fm

)

(c) R = 6.4 fm

–10 –5  0  5  10
Z (fm)

–4

 0

 4

X 
(fm

)

–4

 0

 4

X 
(fm

)

–4

 0

 4

X 
(fm

)

–4

 0

 4

X 
(fm

)

(b) R = 8.0 fm

–4

 0

 4

X 
(fm

)

–4

 0

 4

X 
(fm

)

–4

 0

 4

X 
(fm

)

–4

 0

 4

X 
(fm

)

(a) R = 14.0 fm 16O + 16O

–4

 0

 4

X 
(fm

)

��(r) = � i
�

�
�

2M���
�0| ��̂�(r), P�

� |0�

j�(r) =

�
M���

2�
�0|
�
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• Transition density

• Transition current

Amplitude of the vibrational 
excitation becomes small around 
the touching point

The first 3- excited state of the RPA 
solution with K = 0+



B(E3) strength of the right-sided nucleus
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Coupled-channel calculation with damping 
factor
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YPE parameters

r0 = 1.191 fm, a = 0.6525 fm

Rd = 9.6 fm, ad = 0.9 fm

  Check correlation between the calculated B(E3) and the damping factor 
which well reproduce the experimental data of fusion cross sections



Correlation between B(E3) and damping 
factor

The damping factor simulates the damping of the quantum 
vibrations when colliding nuclei approach each other
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Summary

We, for first time, apply the RPA method to the two-body16O+16O and 
40Ca+40Ca systems and calculate the vibrational excitation when two 
colliding nuclei approach each other


The transition strength B(E3) largely decreases when colliding two 
nuclei approach each other due to the change of their wave functions 
and each 3- excitation mode vanishes


The large reduction of B(E3) around the touching point strongly 
correlates with the damping factor which reproduces well the 
experimental fusion cross section


The vanishing of the coupling between the relative and the intrinsic 
degree of freedoms is responsible for the fusion hindrance in deep sub-
barrier reactions
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